Publications by authors named "Josiah Gerdts"

Background: Progressive multifocal leukoencephalopathy (PML) is a frequently fatal disease of the central nervous system caused by JC virus (JCV). Survival is dependent on early diagnosis and ability to re-establish anti-viral T cell immunity. Adoptive transfer of polyomavirus-specific T cells has shown promise; however, there are no readily available HLA-matched anti-viral T cells to facilitate rapid treatment.

View Article and Find Full Text PDF

CD8+ T cells are the dominant lymphocyte population in multiple sclerosis (MS) lesions where they are highly clonally expanded. The clonal identity, function, and antigen specificity of CD8+ T cells in MS are not well understood. Here we report a comprehensive single-cell RNA-seq and T cell receptor (TCR)-seq analysis of the cerebrospinal fluid (CSF) and blood from a cohort of treatment-naïve MS patients and control participants.

View Article and Find Full Text PDF

Cell adhesion molecules are ubiquitous in multicellular organisms, specifying precise cell-cell interactions in processes as diverse as tissue development, immune cell trafficking and the wiring of the nervous system. Here we show that a wide array of synthetic cell adhesion molecules can be generated by combining orthogonal extracellular interactions with intracellular domains from native adhesion molecules, such as cadherins and integrins. The resulting molecules yield customized cell-cell interactions with adhesion properties that are similar to native interactions.

View Article and Find Full Text PDF

A 67-year-old woman was admitted to our hospital for progressive weakness, dysphagia, muscle pain, and weight loss. Here we detail the clinical problem solving involved in diagnosing and treating her immune-mediated necrotizing myopathy caused by anti-HMGCoA reductase autoantibodies. Interestingly, this diagnosis coincided with discovery of a gastrointestinal stromal tumor (GIST) and positivity for anti-nuclear matrix protein (anti-NXP2), another myositis specific autoantibody.

View Article and Find Full Text PDF

Wallerian axon degeneration is a form of programmed subcellular death that promotes axon breakdown in disease and injury. Active degeneration requires SARM1 and MAP kinases, including DLK, while the NAD+ synthetic enzyme NMNAT2 prevents degeneration. New studies reveal that these pathways cooperate in a locally mediated axon destruction program, with NAD+ metabolism playing a central role.

View Article and Find Full Text PDF

Axon degeneration is an intrinsic self-destruction program that underlies axon loss during injury and disease. Sterile alpha and TIR motif-containing 1 (SARM1) protein is an essential mediator of axon degeneration. We report that SARM1 initiates a local destruction program involving rapid breakdown of nicotinamide adenine dinucleotide (NAD(+)) after injury.

View Article and Find Full Text PDF

Axon degeneration is an evolutionarily conserved pathway that eliminates damaged or unneeded axons. Manipulation of this poorly understood pathway may allow treatment of a wide range of neurological disorders. In an RNAi-based screen performed in cultured mouse DRG neurons, we observed strong suppression of injury-induced axon degeneration upon knockdown of Sarm1 [SARM (sterile α-motif-containing and armadillo-motif containing protein)].

View Article and Find Full Text PDF

Axonal degeneration is a molecular self-destruction cascade initiated following traumatic, toxic, and metabolic insults. Its mechanism underlies a number of disorders including hereditary and diabetic neuropathies and the neurotoxic side effects of chemotherapy drugs. Molecules that promote axonal degeneration could represent potential targets for therapy.

View Article and Find Full Text PDF

Axon degeneration is an active, evolutionarily conserved self-destruction program by which compromised axons fragment in response to varied insults. Unlike programmed cell death, axon degeneration is poorly understood. We have combined robotic liquid handling with automated microscopy and image analysis to create a robust screening platform to measure axon degeneration in mammalian primary neuronal cultures.

View Article and Find Full Text PDF

We used magnetic resonance imaging (MRI) to assess the efficacy of Na+/H+ exchanger isoform 1 (NHE-1) inhibition following cerebral ischemia. Transient focal cerebral ischemia was induced in wild-type controls (NHE-1(+/+)), NHE-1 genetic knockdown mice (NHE-1(+/-)), and NHE-1(+/+) mice treated with the selective NHE-1 inhibitor HOE642. Diffusion weighted imaging (DWI) revealed a brain lesion as early as 1 hour following reperfusion and illustrated significant protection in NHE-1(+/-) mice (16.

View Article and Find Full Text PDF

Na+-K+-Cl(-) cotransporter isoform 1 (NKCC1) and Na+/Ca2+ exchanger isoform 1 (NCX1) were expressed in cortical neurons. Three hours of oxygen and glucose deprivation (OGD) significantly increased expression of full-length NCX1 protein ( approximately 116 kDa), which remained elevated during 1 to 21 h reoxygenation (REOX) and was accompanied with concurrent cleavage of NCX1. Na+/Ca2+ exchanger isoform 1 heterozygous (NCX1+/-) neurons with approximately 50% less of NCX1 protein exhibited approximately 64% reduction in NCX-mediated Ca2+ influx.

View Article and Find Full Text PDF

Na(+)-K(+)-Cl(-) cotransporter isoform 1 (NKCC1) and reverse mode operation of the Na(+)/Ca(2+) exchanger (NCX) contribute to intracellular Na(+) and Ca(2+) overload in astrocytes following oxygen-glucose deprivation (OGD) and reoxygenation (REOX). Here, we further investigated whether NKCC1 and NCX play a role in mitochondrial Ca(2+) (Ca(m)(2+)) overload and dysfunction. OGD/REOX caused a doubling of mitochondrial-releasable Ca(2+) (P < 0.

View Article and Find Full Text PDF