Proc Natl Acad Sci U S A
March 2025
Telomerase elongates telomeres to maintain chromosome stability in most eukaryotes. Despite extensive studies across eukaryotic kingdoms, the telomerase holoenzyme in arthropods remains poorly understood. In this study, we purify the telomerase ribonucleoprotein complex from the lepidopteran insect (fall armyworm) and identify a copurified 135-nucleotide telomerase RNA (TR) component.
View Article and Find Full Text PDFCRISPR arrays and CRISPR-associated (Cas) proteins comprise a prevalent adaptive immune system in bacteria and archaea. These systems defend against exogenous parasitic mobile genetic elements. The adaption of single effector CRISPR-Cas systems has massively facilitated gene-editing due to the reprogrammable guide RNA.
View Article and Find Full Text PDFFor workplaces which cannot operate as telework or remotely, there is a critical need for routine occupational SARS-CoV-2 diagnostic testing. Although diagnostic tests including the CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel (CDC Diagnostic Panel) (EUA200001) were made available early in the pandemic, resource scarcity and high demand for reagents and equipment necessitated priority of symptomatic patients. There is a clearly defined need for flexible testing methodologies and strategies with rapid turnaround of results for (1) symptomatic, (2) asymptomatic with high-risk exposures and (3) asymptomatic populations without preexisting conditions for routine screening to address the needs of an on-site work force.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
October 2022
Telomerase is a eukaryotic ribonucleoprotein (RNP) enzyme that adds DNA repeats onto chromosome ends to maintain genomic stability and confer cellular immortality in cancer and stem cells. The telomerase RNA (TER) component is essential for telomerase catalytic activity and provides the template for telomeric DNA synthesis. The biogenesis of TERs is extremely divergent across eukaryotic kingdoms, employing distinct types of transcription machinery and processing pathways.
View Article and Find Full Text PDFNAR Genom Bioinform
September 2020
CRISPR arrays and CRISPR-associated (Cas) proteins comprise a widespread adaptive immune system in bacteria and archaea. These systems function as a defense against exogenous parasitic mobile genetic elements that include bacteriophages, plasmids and foreign nucleic acids. With the continuous spread of antibiotic resistance, knowledge of pathogen susceptibility to bacteriophage therapy is becoming more critical.
View Article and Find Full Text PDFTelomerase RNA (TR) is a noncoding RNA essential for the function of telomerase ribonucleoprotein. TRs from vertebrates, fungi, ciliates, and plants exhibit extreme diversity in size, sequence, secondary structure, and biogenesis pathway. However, the evolutionary pathways leading to such unusual diversity among eukaryotic kingdoms remain elusive.
View Article and Find Full Text PDFBiosens Bioelectron
September 2019
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) ribonucleoprotein (RNP) complex is an RNA-guided DNA-nuclease that is part of the bacterial adaptive immune system. CRISPR/Cas9 RNP has been adapted for targeted genome editing within cells and whole organisms with new applications vastly outpacing detection and quantification of gene-editing reagents. Detection of the CRISPR/Cas9 RNP within biological samples is critical for assessing gene-editing reagent delivery efficiency, retention, persistence, and distribution within living organisms.
View Article and Find Full Text PDFHuman telomerase synthesizes telomeric DNA repeats (GGTTAG) onto chromosome ends using a short template from its integral telomerase RNA (hTR). However, telomerase is markedly slow for processive DNA synthesis among DNA polymerases. We report here that the unique template-embedded pause signal restricts the first nucleotide incorporation for each repeat synthesized, imparting a significantly greater This slow nucleotide incorporation step drastically limits repeat addition processivity and rate under physiological conditions, which is alleviated with augmented concentrations of dGTP or dGDP, and not with dGMP nor other nucleotides.
View Article and Find Full Text PDFTelomeres are repetitive DNA sequences at linear chromosome termini, protecting chromosomes against end-to-end fusion and damage, providing chromosomal stability. Telomeres shorten with mitotic cellular division, but are maintained in cells with high proliferative capacity by telomerase. Loss-of-function mutations in telomere-maintenance genes are genetic risk factors for cirrhosis development in humans and murine models.
View Article and Find Full Text PDFChronic obstructive pulmonary disease and pulmonary fibrosis have been hypothesized to represent premature aging phenotypes. At times, they cluster in families, but the genetic basis is not understood. We identified rare, frameshift mutations in the gene for nuclear assembly factor 1, NAF1, a box H/ACA RNA biogenesis factor, in pulmonary fibrosis-emphysema patients.
View Article and Find Full Text PDFNucleic Acids Res
November 2016
Telomerase emerged during evolution as a prominent solution to the eukaryotic linear chromosome end-replication problem. Telomerase minimally comprises the catalytic telomerase reverse transcriptase (TERT) and telomerase RNA (TR) that provides the template for telomeric DNA synthesis. While the TERT protein is well-conserved across taxa, TR is highly divergent amongst distinct groups of species.
View Article and Find Full Text PDFTelomerase is the eukaryotic solution to the 'end-replication problem' of linear chromosomes by synthesising the highly repetitive DNA constituent of telomeres, the nucleoprotein cap that protects chromosome termini. Functioning as a ribonucleoprotein (RNP) enzyme, telomerase is minimally composed of the highly conserved catalytic telomerase reverse transcriptase (TERT) and essential telomerase RNA (TR) component. Beyond merely providing the template for telomeric DNA synthesis, TR is an innate telomerase component and directly facilitates enzymatic function.
View Article and Find Full Text PDFAtomically thin transition-metal dichalcogenides (TMDs) have attracted considerable interest because of their unique combination of properties, including photoluminescence, high lubricity, flexibility, and catalytic activity. These unique properties suggest future uses for TMDs in medical applications such as orthodontics, endoscopy, and optogenetics. However, few studies thus far have investigated the biocompatibility of mechanically exfoliated and chemical vapor deposition (CVD)-grown pristine two-dimensional TMDs.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein (RNP) enzyme that requires an integral telomerase RNA (TR) subunit, in addition to the catalytic telomerase reverse transcriptase (TERT), for enzymatic function. The secondary structures of TRs from the three major groups of species, ciliates, fungi, and vertebrates, have been studied extensively and demonstrate dramatic diversity. Herein, we report the first comprehensive secondary structure of TR from echinoderms-marine invertebrates closely related to vertebrates-determined by phylogenetic comparative analysis of 16 TR sequences from three separate echinoderm classes.
View Article and Find Full Text PDFTelomerase RNA (TER) is an essential component of the telomerase ribonucleoprotein complex. The mechanism for TER 3'-end processing is highly divergent among different organisms. Here we report a unique spliceosome-mediated TER 3'-end cleavage mechanism in Neurospora crassa that is distinct from that found specifically in the fission yeast Schizosaccharomyces pombe.
View Article and Find Full Text PDFMutations in the essential telomerase genes TERT and TR cause familial pulmonary fibrosis; however, in telomerase-null mice, short telomeres predispose to emphysema after chronic cigarette smoke exposure. Here, we tested whether telomerase mutations are a risk factor for human emphysema by examining their frequency in smokers with chronic obstructive pulmonary disease (COPD). Across two independent cohorts, we found 3 of 292 severe COPD cases carried deleterious mutations in TERT (1%).
View Article and Find Full Text PDFTelomerase is a specialized reverse transcriptase (RT) containing an intrinsic telomerase RNA (TR) component. It synthesizes telomeric DNA repeats, (GGTTAG)n in humans, by reiteratively copying a precisely defined, short template sequence from the integral TR. The specific mechanism of how the telomerase active site uses this short template region accurately and efficiently during processive DNA repeat synthesis has remained elusive.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein (RNP) enzyme essential for telomere maintenance and chromosome stability. While the catalytic telomerase reverse transcriptase (TERT) protein is well conserved across eukaryotes, telomerase RNA (TR) is extensively divergent in size, sequence, and structure. This diversity prohibits TR identification from many important organisms.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein with an intrinsic telomerase RNA (TER) component. Within yeasts, TER is remarkably large and presents little similarity in secondary structure to vertebrate or ciliate TERs. To better understand the evolution of fungal telomerase, we identified 74 TERs from Pezizomycotina and Taphrinomycotina subphyla, sister clades to budding yeasts.
View Article and Find Full Text PDFTelomerase is a reverse transcriptase specialized in the addition of telomeric DNA repeats onto the ends of chromosomes. Telomere extension offsets the loss of telomeric repeats from the failure of DNA polymerases to fully replicate linear chromosome ends. Telomerase functions as a ribonucleoprotein, requiring an integral telomerase RNA (TR) component, in addition to the catalytic telomerase reverse transcriptase (TERT).
View Article and Find Full Text PDFTelomerase synthesizes telomeric DNA repeats onto chromosome termini from an intrinsic RNA template. The processive synthesis of DNA repeats relies on a unique, yet poorly understood, mechanism whereby the telomerase RNA template translocates and realigns with the DNA primer after synthesizing each repeat. Here, we provide evidence that binding of the realigned RNA/DNA hybrid by the active site is an essential step for template translocation.
View Article and Find Full Text PDFTelomerase is a specialized reverse transcriptase that adds telomeric DNA repeats onto chromosome termini. Here, we characterize a new telomerase-specific motif, called motif 3, in the catalytic domain of telomerase reverse transcriptase, that is crucial for telomerase function and evolutionally conserved between vertebrates and ciliates. Comprehensive mutagenesis of motif 3 identified mutations that remarkably increase the rate or alter the processivity of telomere repeat addition.
View Article and Find Full Text PDFTelomerase is a ribonucleoprotein enzyme that extends DNA at the chromosome ends in most eukaryotes. Since 1985, telomerase has been studied intensively and components of the telomerase complex have been identified from over 160 eukaryotic species. In the last two decades, there has been a growing interest in studying telomerase owing to its vital role in chromosome stability and cellular immortality.
View Article and Find Full Text PDF