Background: Effective transcranial temporal interference stimulation (tTIS) requires an optimized electrode configuration to target deep brain structures accurately. While individualized electric field analysis using high-resolution structural MRI enables precise electrode placement, its clinical practicality is limited by significant costs associated with imaging, specialized software, and navigation systems. Alternatively, standardized electrode montages optimized through population-based electric field analysis might overcome these limitations, although it remains unclear how accurately this approach approximates individualized optimization.
View Article and Find Full Text PDFBiomimetics (Basel)
February 2025
Assisting patients with weakened hand and wrist strength during meals is essential. While various feeding devices have been developed, many do not utilize patients' residual finger functions, leading to an increase in the risk of disuse syndrome and loss of joy in life. Recently, assist-as-needed support for spoon grasping by soft hand rehabilitation devices has been studied.
View Article and Find Full Text PDFObjective: The primary goals of glioma surgery are maximal tumor resection and preservation of brain function. Intraoperative motor-evoked potential (MEP) monitoring is commonly used to predict and minimize postoperative paralysis. However, studies on intraoperative MEP trends and postoperative paralysis are scarce.
View Article and Find Full Text PDF: Transcranial electrical stimulation (tES) generates an electric field (or current density) in the brain through surface electrodes attached to the scalp. Clinical significance has been demonstrated, although with moderate and heterogeneous results partly due to a lack of control of the delivered electric currents. In the last decade, computational electric field analysis has allowed the estimation and optimization of the electric field using accurate anatomical head models.
View Article and Find Full Text PDFFront Hum Neurosci
April 2024
The dose-response characteristics of transcranial direct current stimulation (tDCS) remain uncertain but may be related to variability in brain electric fields due to individual anatomical factors. Here, we investigated whether the electric fields influence the responses to motor cortical tDCS. In a randomized cross-over design, 21 participants underwent 10 min of anodal tDCS with 0.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Electrical properties (EPs) are expected as biomarkers for early cancer detection. Magnetic resonance electrical properties tomography (MREPT) is a technique to non-invasively estimate the EPs of tissues from MRI measurements. While noise sensitivity and artifact problems of MREPT are being solved progressively through recent efforts, the loss of tissue contrast emerges as an obstacle to the clinical applications of MREPT.
View Article and Find Full Text PDFBiomed Phys Eng Express
August 2023
Simulation in healthcare can help train, improve, and evaluate medical personnel's skills. In the case of needle insertion/manipulation inside the muscle during an nEMG examination, a training simulator Requires estimating the position of the needle to output the electrical muscle activity in real time according to the training plan. External cameras can be used to estimate the needle location; however, different error sources can make its implementation difficult and new medical sensing technologies are needed.
View Article and Find Full Text PDFObjective: Transcranial direct current stimulation (tDCS) injects a weak electric current into the brain via electrodes attached to the scalp to modulate cortical excitability. tDCS is used to rebalance brain activity between affected and unaffected hemispheres in rehabilitation. However, a systematic quantitative evaluation of tDCS montage is not reported for the lower limbs.
View Article and Find Full Text PDFElectrical stimulation of skin nociceptors is gaining attention in pain research and peripheral neuropathy diagnosis. However, the optimal parameters for selective stimulation are still difficult to determine because they require simultaneous characterization of the electrical response of small fibers (Aδ- and C-fibers). In this study, we measured the electrical threshold responses of small fibers to train-pulse stimulation in humans for the first time.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) activates brain cells in a noninvasive manner and can be used for mapping brain motor functions. However, the complexity of the brain anatomy prevents the determination of the exact location of the stimulated sites, resulting in the limitation of the spatial resolution of multiple targets. The aim of this study is to map two neighboring muscles in cortical motor areas accurately and quickly.
View Article and Find Full Text PDFBackground: Transcranial direct current stimulation (tDCS) is a technique that can noninvasively modulate neural states in a targeted brain region. As cerebellar activity levels are associated with upper limb motor improvement after stroke, the cerebellum is a plausible target of tDCS. However, the effect of tDCS remains unclear.
View Article and Find Full Text PDFThe effects of transcranial alternating current stimulation (tACS) frequency on brain oscillations and cortical excitability are still controversial. Therefore, this study investigated how different tACS frequencies differentially modulate cortical oscillation and inhibition. To do so, we first determined the optimal positioning of tACS electrodes through an electric field simulation constructed from magnetic resonance images.
View Article and Find Full Text PDFInt J Environ Res Public Health
December 2021
The external field strength according to the international guidelines and standards for human protection are derived to prevent peripheral nerve system pain at frequencies from 300-750 Hz to 1 MHz. In this frequency range, the stimulation is attributable to axon electrostimulation. One limitation in the current international guidelines is the lack of respective stimulation thresholds in the brain and peripheral nervous system from in vivo human measurements over a wide frequency range.
View Article and Find Full Text PDFClin Neurophysiol Pract
August 2021
Objective: Pain sensation at the site of stimulation is a side effect of transcranial magnetic stimulation (TMS). The purpose of this study was to investigate how or whether the coil orientation affected TMS-induced pain on Broca's area (BA) or primary motor cortex (M1).
Methods: In Experiment 1, we measured pain thresholds during single-pulse TMS delivered over BA or left M1 at seven coil orientation angles (-90° to 90°, in 30° increments) relative to the posterior-anterior (PA) orientation.
There has been a growing interest in the non-invasive stimulation of specific brain tissues, while reducing unintended stimulation in surrounding regions, for the medical treatment of brain disorders. Traditional methods for non-invasive brain stimulation, such as transcranial direct current stimulation (tDCS) or transcranial magnetic stimulation (TMS), can stimulate brain regions, but they also simultaneously stimulate the brain and non-brain regions that lie between the target and the stimulation site of the source. Temporal interference (TI) stimulation has been suggested to selectively stimulate brain regions by superposing two alternating currents with slightly different frequencies injected through electrodes attached to the scalp.
View Article and Find Full Text PDFInternational guidelines/standards for human protection from electromagnetic fields have been revised recently, especially for frequencies above 6 GHz where new wireless communication systems have been deployed. Above this frequency a new physical quantity 'absorbed/epithelial power density' has been adopted as a dose metric. Then, the permissible level of external field strength/power density is derived for practical assessment.
View Article and Find Full Text PDFFront Neurosci
February 2021
For human protection, the internal electric field is used as a dosimetric quantity for electromagnetic fields lower than 5-10 MHz. According to international standards, in this frequency range, electrostimulation is the main adverse effect against which protection is needed. One of the topics to be investigated is the quantification of the internal electric field threshold levels of perception and pain.
View Article and Find Full Text PDFFront Neurosci
January 2021
Electrical stimulation of small fibres is gaining attention in the diagnosis of peripheral neuropathies, such as diabetes mellitus, and pain research. However, it is still challenging to characterise the electrical characteristics of axons in small fibres (Aδ and C fibres). In particular, measurement for human Aδ-fibre is difficult due to the presence of myelin and ethical reason.
View Article and Find Full Text PDFIn several diagnosis and therapy procedures based on electrostimulation effect, the internal physical quantity related to the stimulation is the induced electric field. To estimate the induced electric field in an individual human model, the segmentation of anatomical imaging, such as magnetic resonance image (MRI) scans, of the corresponding body parts into tissues is required. Then, electrical properties associated with different annotated tissues are assigned to the digital model to generate a volume conductor.
View Article and Find Full Text PDFIn this study, we analyzed the spread and decay durations of the COVID-19 pandemic in several cities of China, England, Germany, and Japan, where the first wave has undergone decay. Differences in medical and health insurance systems, as well as in regional policies incommoded the comparison of the spread and decay in different cities and countries. The spread and decay durations in the cities of the four studied countries were reordered and calculated based on an asymmetric bell-shaped model.
View Article and Find Full Text PDFInt J Environ Res Public Health
July 2020
This study analyzed the spread and decay durations of the COVID-19 pandemic in different prefectures of Japan. During the pandemic, affordable healthcare was widely available in Japan and the medical system did not suffer a collapse, making accurate comparisons between prefectures possible. For the 16 prefectures included in this study that had daily maximum confirmed cases exceeding ten, the number of daily confirmed cases follow bell-shape or log-normal distribution in most prefectures.
View Article and Find Full Text PDFPhys Med Biol
December 2020
Transcranial magnetic stimulation (TMS) is a technique for noninvasively stimulating a brain area for therapeutic, rehabilitation treatments and neuroscience research. Despite our understanding of the physical principles and experimental developments pertaining to TMS, it is difficult to identify the exact brain target as the generated electric field exhibits a non-uniform distribution owing to the complicated and subject-dependent brain anatomy and the lack of biomarkers that can quantify the effects of TMS in most cortical areas. Computational dosimetry has progressed significantly and enables TMS assessment by computation of the induced electric field (the primary physical agent known to activate the brain neurons) in a digital representation of the human head.
View Article and Find Full Text PDFObjective: Transcranial magnetic stimulation (TMS) activates brain structures non-invasively. Computational models can be used to elucidate the activation site; however, the exact activation site is controversial. The aim is to present an imaging technique of the TMS activation cortical site estimation using individualized multi-scale realistic head models based on experimentally-derived TMS fields.
View Article and Find Full Text PDF