Publications by authors named "Jorg G Jacobs"

Aim: CH1641 was discovered in 1970 as a scrapie isolate that was unlike all other classical strains of scrapie isolated so far. We performed bio-assays of CH1641 in mice in order to further characterise this specific isolate.

Methods: We inoculated the original CH1641 isolate into ovine and bovine prion protein (PrP) transgenic mice as well as wild-type mice.

View Article and Find Full Text PDF

Scrapie in goats has been known since 1942, the archetype of prion diseases in which only prion protein (PrP) in misfolded state (PrP) acts as infectious agent with fatal consequence. Emergence of bovine spongiform encephalopathy (BSE) with its zoonotic behaviour and detection in goats enhanced fears that its source was located in small ruminants. However, in goats knowledge on prion strain typing is limited.

View Article and Find Full Text PDF

Efforts to differentiate bovine spongiform encephalopathy (BSE) from scrapie in prion infected sheep have resulted in effective methods to decide about the absence of BSE. In rare instances uncertainties remain due to assumptions that BSE, classical scrapie and CH1641-a rare scrapie variant-could occur as mixtures. In field samples including those from fallen stock, triplex Western blotting analyses of variations in the molecular properties of the proteinase K resistant part of the disease‑associated form of prion protein (PrP(res)) represents a powerful tool for quick discrimination purposes.

View Article and Find Full Text PDF

Prion diseases or transmissible spongiform encephalopathies (TSEs) in small ruminants are presented in many forms: classical scrapie, Nor98/atypical scrapie, CH1641 scrapie and bovine spongiform encephalopathy (BSE). We previously described a multiplex immunofluorometric assay (mIFMA), based on a bead array flow cytometry technology, which provided, in a single assay, discrimination between BSE (in cattle and sheep) and classical scrapie (Tang et al., 2010).

View Article and Find Full Text PDF

In anticipation of the emergence of more variants of bovine spongiform encephalopathy (BSE), a semiquantitative display of the following four independent molecular diagnostic prion parameters was designed: N terminus, proteinase K (PK) resistance, glycoprofile, and mixed population. One H BSE case, three L BSE cases, six C BSE cases, and one unusual classical BSE (C BSE) case are reported.

View Article and Find Full Text PDF

To establish bovine spongiform encephalopathy (BSE) public health protection measures it is important to precisely define the cattle tissues considered as specified risk materials (SRM). To date, in pre-clinical BSE infected cattle, no evidence of the BSE agent had been found in the gut outside of the ileal Peyer's Patches. This study was undertaken to determine when and where the pathological prion protein (PrPSc) and/or BSE infectivity can be found in the small intestine of cattle 4 to 6 months of age, orally challenged with BSE.

View Article and Find Full Text PDF
Article Synopsis
  • There is currently no evidence that European sheep are infected with BSE, but it's crucial to differentiate it from scrapie due to their links to human prion diseases.
  • Biochemical methods like Western blot analysis are used to distinguish between BSE and scrapie by observing abnormal prion protein patterns but are not suitable for large-scale testing.
  • A new, simpler test using bead array flow cytometry with multiple antibodies has been developed for faster and accurate diagnosis, showing 100% predictive value in preliminary studies.
View Article and Find Full Text PDF

Transmissible spongiform encephalopathy strains can be differentiated by their behavior in bioassays and by molecular analyses of the disease-associated prion protein (PrP) in a posttranslationally transformed conformation (PrPSc). Until recently, isolates from cases of bovine spongiform encephalopathy (BSE) appeared to be very homogeneous. However, a limited number of atypical BSE isolates have recently been identified upon analyses of the disease-associated proteinase K (PK) resistance-associated moiety of PrPSc (PrPres), suggesting the existence of at least two additional BSE PrPres variants.

View Article and Find Full Text PDF

Background: The common event in transmissible spongiform encephalopathies (TSEs) or prion diseases is the conversion of host-encoded protease sensitive cellular prion protein (PrPC) into strain dependent isoforms of scrapie associated protease resistant isoform (PrPSc) of prion protein (PrP). These processes are determined by similarities as well as strain dependent variations in the PrP structure. Selective self-interaction between PrP molecules is the most probable basis for initiation of these processes, potentially influenced by chaperone molecules, however the mechanisms behind these processes are far from understood.

View Article and Find Full Text PDF

We previously reported that some cattle affected by bovine spongiform encephalopathy (BSE) showed distinct molecular features of the protease-resistant prion protein (PrP(res)) in Western blot, with a 1-2 kDa higher apparent molecular mass of the unglycosylated PrP(res) associated with labelling by antibodies against the 86-107 region of the bovine PrP protein (H-type BSE). By Western blot analyses of PrP(res), we now showed that the essential features initially described in cattle were observed with a panel of different antibodies and were maintained after transmission of the disease in C57Bl/6 mice. In addition, antibodies against the C-terminal region of PrP revealed a second, more C-terminally cleaved, form of PrP(res) (PrP(res) #2), which, in unglycosylated form, migrated as a approximately 14 kDa fragment.

View Article and Find Full Text PDF

Background: Diagnosis based on prion detection in lymph nodes of sheep and goats can improve active surveillance for scrapie and, if it were circulating, for bovine spongiform encephalopathy (BSE). With sizes that allow repetitive testing and a location that is easily accessible at slaughter, retropharyngeal lymph nodes (RLN) are considered suitable organs for testing. Western blotting (WB) of brain homogenates is, in principle, a technique well suited to both detect and discriminate between scrapie and BSE.

View Article and Find Full Text PDF