Evolving antimicrobial resistance has motivated the search for novel targets and alternative therapies. Caseinolytic protease (ClpP) has emerged as an enticing new target since its function is conserved and essential for bacterial fitness, and because its inhibition or dysregulation leads to bacterial cell death. ClpP protease function controls global protein homeostasis and is, therefore, crucial for the maintenance of the bacterial proteome during growth and infection.
View Article and Find Full Text PDFBacterial ClpP is a highly conserved, cylindrical, self-compartmentalizing serine protease required for maintaining cellular proteostasis. Small molecule acyldepsipeptides (ADEPs) and activators of self-compartmentalized proteases 1 (ACP1s) cause dysregulation and activation of ClpP, leading to bacterial cell death, highlighting their potential use as novel antibiotics. Structural changes in and ClpP upon binding to novel ACP1 and ADEP analogs were probed by X-ray crystallography, methyl-TROSY NMR, and small angle X-ray scattering.
View Article and Find Full Text PDFThe problem of antibiotic resistance has prompted the search for new antibiotics with novel mechanisms of action. Analogues of the A54556 cyclic acyldepsipeptides (ADEPs) represent an attractive class of antimicrobial agents that act through dysregulation of caseinolytic protease (ClpP). Previous studies have shown that ADEPs are active against Gram-positive bacteria (e.
View Article and Find Full Text PDFThe first total synthesis of all six known A54556 acyldepsipeptide (ADEP) antibiotics from Streptomyces hawaiiensis is reported. This family of compounds has a unique mechanism of antibacterial action, acting as activators of caseinolytic protease (ClpP). Assembly of the 16-membered depsipeptide core was accomplished via a pentafluorophenyl ester-based macrolactamization strategy.
View Article and Find Full Text PDFA general method for the synthesis of amides involving the direct coupling of alkali metal carboxylate salts with amines is described. Amidation of a wide variety of carboxylate salts with either free amines or their ammonium hydrochloride salts can be achieved using HBTU as a coupling agent in combination with Hünig's base. The reaction is highly efficient and is generally complete in as little as 1-2 h, giving the products in good to excellent yields.
View Article and Find Full Text PDFThe regio- and absolute stereochemistry of (7S)-N-[4-(3-thienyl)tricyclo[4.2.1.
View Article and Find Full Text PDF