Publications by authors named "Jonathan Heeney"

SARS-CoV-2 continues to evolve antigenically under the immune pressure exerted by both natural infection and vaccination. As new variants emerge, we face the recurring challenge of updating vaccines at significant financial cost to maintain their efficacy. To address this, novel strategies are needed to enhance the breadth of protection offered by vaccines or, at a minimum, extend their effectiveness over time.

View Article and Find Full Text PDF

Background: The impact of the infecting SARS-CoV-2 variant of concern (VOC) and the vaccination status was determined on the magnitude, breadth, and durability of the neutralizing antibody (nAb) profile in a longitudinal multicentre cohort study.

Methods: 173 vaccinated and 56 non-vaccinated individuals were enrolled after SARS-CoV-2 Alpha, Delta, or Omicron infection and visited four times within 6 months and nAbs were measured for D614G, Alpha, Delta, BA.1, BA.

View Article and Find Full Text PDF

Updates of SARS-CoV-2 vaccines are required to generate immunity in the population against constantly evolving SARS-CoV-2 variants of concerns (VOCs). Here we describe three novel in-silico designed spike-based antigens capable of inducing neutralising antibodies across a spectrum of SARS-CoV-2 VOCs. Three sets of antigens utilising pre-Delta (T2_32), and post-Gamma sequence data (T2_35 and T2_36) were designed.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron breakthrough infection (BTI) induced better protection than triple vaccination. To address the underlying immunological mechanisms, we studied antibody and T cell response dynamics during vaccination and after BTI. Each vaccination significantly increased peak neutralization titers with simultaneous increases in circulating spike-specific T cell frequencies.

View Article and Find Full Text PDF

Introduction: One of the unexpected outcomes of the COVID-19 pandemic was the relatively low levels of morbidity and mortality in Africa compared to the rest of the world. Nigeria, Africa's most populous nation, accounted for less than 0.01% of the global COVID-19 fatalities.

View Article and Find Full Text PDF

Background: Simian immunodeficiency viruses (SIV) have been jumping between non-human primates in West/Central Africa for thousands of years and yet, the HIV-1 epidemic only originated from a primate lentivirus over 100 years ago.

Methods: This study examined the replicative fitness, transmission, restriction, and cytopathogenicity of 22 primate lentiviruses in primary human lymphoid tissue and both primary human and chimpanzee peripheral blood mononuclear cells.

Findings: Pairwise competitions revealed that SIV from chimpanzees (cpz) had the highest replicative fitness in human or chimpanzee peripheral blood mononuclear cells, even higher fitness than HIV-1 group M strains responsible for worldwide epidemic.

View Article and Find Full Text PDF

Vaccines based on historical virus isolates provide limited protection from continuously evolving RNA viruses, such as influenza viruses or coronaviruses, which occasionally spill over between animals and humans. Despite repeated booster immunizations, population-wide declines in the neutralization of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have occurred. This has been compared to seasonal influenza vaccinations in humans, where the breadth of immune responses induced by repeat exposures to antigenically distinct influenza viruses is confounded by pre-existing immunity-a mechanism known as imprinting.

View Article and Find Full Text PDF

Most patients with COVID-19 in the intensive care unit develop an acute respiratory distress syndrome characterized by severe hypoxemia, decreased lung compliance, and high vascular permeability. Activation of the complement system is a hallmark of moderate and severe COVID-19, with abundant deposition of complement proteins in inflamed tissue and on the endothelium during COVID-19. Using a transgenic mouse model of SARS-CoV-2 infection, we assessed the therapeutic utility of an inhibitory antibody (HG4) targeting MASP-2, a key enzyme in the lectin pathway.

View Article and Find Full Text PDF

The SARS-CoV-2 genome encodes a multitude of accessory proteins. Using comparative genomic approaches, an additional accessory protein, ORF3c, has been predicted to be encoded within the ORF3a sgmRNA. Expression of ORF3c during infection has been confirmed independently by ribosome profiling.

View Article and Find Full Text PDF

The antiviral restriction factor, tetherin, blocks the release of several different families of enveloped viruses, including the Coronaviridae. Tetherin is an interferon-induced protein that forms parallel homodimers between the host cell and viral particles, linking viruses to the surface of infected cells and inhibiting their release. We demonstrate that SARS-CoV-2 infection causes tetherin downregulation and that tetherin depletion from cells enhances SARS-CoV-2 viral titres.

View Article and Find Full Text PDF

Background: The virus neutralization assay is a principal method to assess the efficacy of antibodies in blocking viral entry. Due to biosafety handling requirements of viruses classified as hazard group 3 or 4, pseudotyped viruses can be used as a safer alternative. However, it is often queried how well the results derived from pseudotyped viruses correlate with authentic virus.

View Article and Find Full Text PDF

Safe and effective vaccines have been regarded early on as critical in combating the COVID-19 pandemic. Among the deployed vaccine platforms, subunit vaccines have a particularly good safety profile but may suffer from a lower immunogenicity compared to mRNA based or viral vector vaccines. In fact, this phenomenon has also been observed for SARS-CoV-2 subunit vaccines comprising the receptor-binding domain (RBD) of the spike (S) protein.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a single antigen from the spike protein's receptor binding domain, which triggered strong immune responses in different animal models, including mice, rabbits, and guinea pigs against multiple SARS-related viruses.
  • * The use of DNA and mRNA-based vaccine strategies demonstrated effective protection against the Delta variant of SARS-CoV-2 in genetically modified mice, emphasizing the potential for broad-spectrum coronavirus vaccines to prevent zoonotic spillovers.
View Article and Find Full Text PDF

Background: Immunodeficient patients (IDPs) are at higher risk of contracting severe coronavirus disease 2019 (COVID-19). Targeted vaccination strategies have been implemented to enhance vaccine-induced protection. In this population, however, clinical effectiveness is variable and the duration of protection unknown.

View Article and Find Full Text PDF

The accelerated development of the first generation COVID-19 vaccines has saved millions of lives, and potentially more from the long-term sequelae of SARS-CoV-2 infection. The most successful vaccine candidates have used the full-length SARS-CoV-2 spike protein as an immunogen. As expected of RNA viruses, new variants have evolved and quickly replaced the original wild-type SARS-CoV-2, leading to escape from natural infection or vaccine induced immunity provided by the original SARS-CoV-2 spike sequence.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the immune responses in Lassa fever (LF) survivors and their contacts in Nigeria to understand natural protection and inform vaccine development.
  • It finds that while both groups show similar T cell and antibody responses, neutralizing antibodies are predominantly present in LF survivors and provide cross-reactivity against various LASV strains.
  • The research also highlights that immune responses diminish over time, suggesting potential vaccine targets in specific areas of the LASV Glycoprotein and Nucleoprotein for future clinical trials.
View Article and Find Full Text PDF

To better understand how inhibition of the influenza neuraminidase (NA) protein contributes to protection against influenza, we produced lentiviral vectors pseudotyped with an avian H11 hemagglutinin (HA) and the NA of all influenza A (N1-N9) subtypes and influenza B (B/Victoria and B/Yamagata). These NA viral pseudotypes (PV) possess stable NA activity and can be utilized as target antigens in in vitro assays to assess vaccine immunogenicity. Employing these NA PV, we developed an enzyme-linked lectin assay (pELLA) for routine serology to measure neuraminidase inhibition (NI) titers of reference antisera, monoclonal antibodies and post-vaccination sera with various influenza antigens.

View Article and Find Full Text PDF

Objectives: To investigate serological differences between SARS-CoV-2 reinfection cases and contemporary controls, to identify antibody correlates of protection against reinfection.

Methods: We performed a case-control study, comparing reinfection cases with singly infected individuals pre-vaccination, matched by gender, age, region and timing of first infection. Serum samples were tested for anti-SARS-CoV-2 spike (anti-S), anti-SARS-CoV-2 nucleocapsid (anti-N), live virus microneutralisation (LV-N) and pseudovirus microneutralisation (PV-N).

View Article and Find Full Text PDF

To control HIV infection there is a need for vaccines to induce broad, potent and long-term B and T cell immune responses. With the objective to accelerate and maintain the induction of substantial levels of HIV-1 Env-specific antibodies and, at the same time, to enhance balanced CD4 and CD8 T cell responses, we evaluated the effect of concurrent administration of MF59-adjuvanted Env protein together with DNA or NYVAC vectors at priming to establish if early administration of Env leads to early induction of antibody responses. The primary goal was to assess the immunogenicity endpoint at week 26.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers trapped 942 rodents across Ondo and Ebonyi states, finding a high overall LASV prevalence of 53.6%, with Ondo state showing significantly higher LASV rates and Lassa fever cases compared to Ebonyi State.
  • * The study revealed high positivity rates of LASV in various rodent genera, particularly Mastomys in Ondo, and identified key tissues (kidneys, spleen, testes) for LASV detection, suggesting a complex network of transmission that heightens spillover
View Article and Find Full Text PDF
Article Synopsis
  • The SARS-CoV-2 virus, which causes COVID-19, became a global health crisis with significant health impacts.
  • Researchers are exploring whether antibodies from four common, seasonal coronaviruses, especially NL63, influence the severity of COVID-19.
  • Their study includes analyzing neutralizing antibodies in COVID-19 patients and healthcare workers, finding that while antibodies against seasonal coronaviruses are common, they do not effectively neutralize SARS-CoV-2, although NL63 antibodies increase post-infection or vaccination.
View Article and Find Full Text PDF

The involvement of immunoglobulin (Ig) G3 in the humoral immune response to SARS-CoV-2 infection has been implicated in the pathogenesis of acute respiratory distress syndrome (ARDS) in COVID-19. The exact molecular mechanism is unknown, but it is thought to involve this IgG subtype's differential ability to fix, complement and stimulate cytokine release. We examined the binding of convalescent patient antibodies to immobilized nucleocapsids and spike proteins by matrix-assisted laser desorption/ionization-time of flight (MALDI-ToF) mass spectrometry.

View Article and Find Full Text PDF