Atomic force microscopy (AFM) is widely used to measure surface topography of solid, soft, and living matter at the nanoscale. Moreover, by mapping forces as a function of distance to the surface, AFM can provide a wealth of information beyond topography, with nanomechanical properties as a prime example. Here, a method based on photothermal off-resonance tapping (PORT) is presented to increase the speed of such force spectroscopy measurements by at least an order of magnitude, thereby enabling high-throughput, quantitative nanomechanical mapping of a wide range of materials.
View Article and Find Full Text PDFThe regulation of cell growth has fundamental physiological, biotechnological and medical implications. However, methods that can continuously monitor individual cells at sufficient mass and time resolution hardly exist. Particularly, detecting the mass of individual microbial cells, which are much smaller than mammalian cells, remains challenging.
View Article and Find Full Text PDFAtomic force microscopy is a powerful technique for measurement and mapping of nanoscale topography and electrical and mechanical sample properties. The Nanosurf DriveAFM is a new generation instrument that combines ease of use and high performance through full motorization, CleanDrive photothermal excitation, and a mechanical and electrical design that allows for both high-resolution and large-range imaging.
View Article and Find Full Text PDFBeilstein J Nanotechnol
November 2019
Employing polymer cantilevers has shown to outperform using their silicon or silicon nitride analogues concerning the imaging speed of atomic force microscopy (AFM) in tapping mode (intermittent contact mode with amplitude modulation) by up to one order of magnitude. However, tips of the cantilever made out of a polymer material do not meet the requirements for tip sharpness and durability. Combining the high imaging bandwidth of polymer cantilevers with making sharp and wear-resistant tips is essential for a future adoption of polymer cantilevers in routine AFM use.
View Article and Find Full Text PDFJ Phys Chem A
September 2017
We used crossed laser-molecular beam scattering to study the primary photodissociation channels of chloroacetaldehyde (CHClCHO) at 157 nm. In addition to the C-Cl bond fission primary photodissociation channel, the data evidence two other photodissociation channels: HCl photoelimination and C-C bond fission. This is the first direct evidence of the C-C bond fission channel in chloroacetaldehyde, and we found that it significantly competes with the C-Cl bond fission channel.
View Article and Find Full Text PDFThese experiments report the dissociative photoionization of vinoxy radicals to m/z = 15 and 29. In a crossed laser-molecular beam scattering apparatus, we induce C-Cl bond fission in 2-chloroacetaldehyde by photoexcitation at 157 nm. Our velocity measurements, combined with conservation of angular momentum, show that 21% of the C-Cl photofission events form vinoxy radicals that are stable to subsequent dissociation to CH + CO or H + ketene.
View Article and Find Full Text PDFThe sensitivity and detection speed of cantilever-based mechanical sensors increases drastically through size reduction. The need for such increased performance for high-speed nanocharacterization and bio-sensing, drives their sub-micrometre miniaturization in a variety of research fields. However, existing detection methods of the cantilever motion do not scale down easily, prohibiting further increase in the sensitivity and detection speed.
View Article and Find Full Text PDFWe investigate the unimolecular dissociation of the vinoxy radical (CH2CHO) prepared with high internal energy imparted from the photodissociation of chloroacetaldehyde (CH2ClCHO) at 157 nm. Using a velocity map imaging apparatus, we measured the speed distribution of the recoiling chlorine atoms, Cl((2)P3/2) and Cl((2)P1/2), and derived from this the resulting distribution of kinetic energy, P(ET), imparted to the Cl + vinoxy fragments upon dissociation. Using conservation of energy, the distribution of kinetic energy was used to determine the total internal energy distribution in the radical.
View Article and Find Full Text PDFNat Nanotechnol
February 2016
The success of high-speed atomic force microscopy in imaging molecular motors, enzymes and microbes in liquid environments suggests that the technique could be of significant value in a variety of areas of nanotechnology. However, the majority of atomic force microscopy experiments are performed in air, and the tapping-mode detection speed of current high-speed cantilevers is an order of magnitude lower in air than in liquids. Traditional approaches to increasing the imaging rate of atomic force microscopy have involved reducing the size of the cantilever, but further reductions in size will require a fundamental change in the detection method of the microscope.
View Article and Find Full Text PDFOptical beam deflection (OBD) is the most prevalent method for measuring cantilever deflections in atomic force microscopy (AFM), mainly due to its excellent noise performance. In contrast, piezoresistive strain-sensing techniques provide benefits over OBD in readout size and the ability to image in light-sensitive or opaque environments, but traditionally have worse noise performance. Miniaturisation of cantilevers, however, brings much greater benefit to the noise performance of piezoresistive sensing than to OBD.
View Article and Find Full Text PDFHigh-speed atomic force microscopy has proven to be a valuable tool for the study of biomolecular systems at the nanoscale. Expanding its application to larger biological specimens such as membranes or cells has, however, proven difficult, often requiring fundamental changes in the AFM instrument. Here we show a way to utilize conventional AFM instrumentation with minor alterations to perform high-speed AFM imaging with a large scan range.
View Article and Find Full Text PDFMultifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers.
View Article and Find Full Text PDFRev Sci Instrum
September 2014
We present an atomic force microscope (AFM) head for optical beam deflection on small cantilevers. Our AFM head is designed to be small in size, easily integrated into a commercial AFM system, and has a modular architecture facilitating exchange of the optical and electronic assemblies. We present two different designs for both the optical beam deflection and the electronic readout systems, and evaluate their performance.
View Article and Find Full Text PDFBeilstein J Nanotechnol
December 2012
Modern high-speed atomic force microscopes generate significant quantities of data in a short amount of time. Each image in the sequence has to be processed quickly and accurately in order to obtain a true representation of the sample and its changes over time. This paper presents an automated, adaptive algorithm for the required processing of AFM images.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2011
Since the invention of hybridoma technology, methods for generating affinity reagents that bind specific target molecules have revolutionized biology and medicine. In the postgenomic era, there is a pressing need to accelerate the pace of ligand discovery to elucidate the functions of a rapidly growing number of newly characterized molecules and their modified states. Nonimmunoglobulin-based proteins such as DARPins, affibodies, and monobodies represent attractive alternatives to traditional antibodies as these are small, soluble, disulfide-free, single-domain scaffolds that can be selected from combinatorial libraries and expressed in bacteria.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
Affinity reagents that bind to specific molecular targets are an essential tool for both diagnostics and targeted therapeutics. There is a particular need for advanced technologies for the generation of reagents that specifically target cell-surface markers, because transmembrane proteins are notoriously difficult to express in recombinant form. We have previously shown that microfluidics offers many advantages for generating affinity reagents against purified protein targets, and we have now significantly extended this approach to achieve successful in vitro selection of T7 phage-displayed peptides that recognize markers expressed on live, adherent cells within a microfluidic channel.
View Article and Find Full Text PDFAcoustophoretic separation in microchannels offers a promising avenue for high-throughput, label-free, cell and particle separation for many applications. However, previous acoustophoretic separation approaches have been limited to a single size separation threshold, analogous to a binary filter, (i.e.
View Article and Find Full Text PDFWe report the first use of ultrasonic standing waves to achieve cell cycle phase synchronization in mammalian cells in a high-throughput and reagent-free manner. The acoustophoretic cell synchronization (ACS) device utilizes volume-dependent acoustic radiation force within a microchannel to selectively purify target cells of desired phase from an asynchronous mixture based on cell cycle-dependent fluctuations in size. We show that ultrasonic separation allows for gentle, scalable, and label-free synchronization with high G(1) phase synchrony (approximately 84%) and throughput (3 x 10(6) cells/h per microchannel).
View Article and Find Full Text PDFJALA Charlottesv Va
December 2009
Sample preparation is often the most tedious and demanding step in an assay, but it also plays an essential role in determining the quality of results. As biological questions and analytical methods become increasingly sophisticated, there is a rapidly growing need for systems that can reliably and reproducibly separate cells and particles with high purity, throughput and recovery. Microfluidics technology represents a compelling approach in this regard, allowing precise control of separation forces for high performance separation in inexpensive, or even disposable, devices.
View Article and Find Full Text PDFWith a growing number of cell-based biotechnological applications, there is a need for particle separation systems capable of multiparameter separations at high purity and throughput, beyond what is presently offered by traditional methods including fluorescence activated cell sorting and column-based magnetic separation. Toward this aim, we report on the integration of microfluidic acoustic and magnetic separation in a monolithic device for multiparameter particle separation. Using our device, we demonstrate high-purity separation of a multicomponent particle mixture at a throughput of up to 10(8) particleshr.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2010
We report the utilization of microfluidic technology to phage selection and demonstrate that accurate control of washing stringency in our microfluidic magnetic separator (MMS) directly impacts the diversity of isolated peptide sequences. Reproducible generation of magnetic and fluidic forces allows controlled washing conditions that enable rapid convergence of selected peptide sequences. These findings may provide a foundation for the development of automated microsystems for rapid in vitro directed evolution of affinity reagents.
View Article and Find Full Text PDFMagnetic selection allows high-throughput sorting of target cells based on surface markers, and it is extensively used in biotechnology for a wide range of applications from in vitro diagnostics to cell-based therapies. However, existing methods can only perform separation based on a single parameter (i.e.
View Article and Find Full Text PDF