Imaging Neurosci (Camb)
August 2024
The application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across 2 consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat-pain stimuli (1 s duration) using the intraclass correlation coefficient (ICC).
View Article and Find Full Text PDFSystemic infection and inflammation impair mental function through a combination of altered attention and cognition. Here, we comprehensively review the relevant literature and report personal clinical observations to discuss the relationship between infection, peripheral inflammation, and cerebral and cognitive dysfunction in patients with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Cognitive dysfunction in ME/CFS could result from low-grade persistent inflammation associated with raised pro-inflammatory cytokines.
View Article and Find Full Text PDFFunctional magnetic resonance imaging (fMRI) of the spinal cord is relevant for studying sensation, movement, and autonomic function. Preprocessing of spinal cord fMRI data involves segmentation of the spinal cord on gradient-echo echo planar imaging (EPI) images. Current automated segmentation methods do not work well on these data, due to the low spatial resolution, susceptibility artifacts causing distortions and signal drop-out, ghosting, and motion-related artifacts.
View Article and Find Full Text PDFNonpainful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging studies have highlighted the value of whole-brain, systems-level investigation for examining sensory processing. However, whole-brain functional magnetic resonance imaging studies are uncommon, in part due to challenges with signal to noise when studying the brainstem.
View Article and Find Full Text PDFTherapeutic hypothermia improves outcomes following neonatal hypoxic-ischaemic encephalopathy, reducing cases of death and severe disability such as cerebral palsy compared with normothermia management. However, when cooled children reach early school-age, they have cognitive and motor impairments which are associated with underlying alterations to brain structure and white matter connectivity. It is unknown whether these differences in structural connectivity are associated with differences in functional connectivity between cooled children and healthy controls.
View Article and Find Full Text PDFNon-painful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging (fMRI) studies have highlighted the value of whole-brain, systems-level investigation for examining pain processing. However, whole-brain fMRI studies are uncommon, in part due to challenges with signal to noise when studying the brainstem.
View Article and Find Full Text PDFResting functional magnetic resonance imaging (fMRI) studies have identified intrinsic spinal cord activity, which forms organised motor (ventral) and sensory (dorsal) resting-state networks. However, to facilitate the use of spinal fMRI in, for example, clinical studies, it is crucial to first assess the reliability of the method, particularly given the unique anatomical, physiological, and methodological challenges associated with acquiring the data. Here, we characterise functional connectivity relationships in the cervical cord and assess their between-session test-retest reliability in 23 young healthy volunteers.
View Article and Find Full Text PDFThe application of functional magnetic resonance imaging (fMRI) to the human spinal cord is still a relatively small field of research and faces many challenges. Here we aimed to probe the limitations of task-based spinal fMRI at 3T by investigating the reliability of spinal cord blood oxygen level dependent (BOLD) responses to repeated nociceptive stimulation across two consecutive days in 40 healthy volunteers. We assessed the test-retest reliability of subjective ratings, autonomic responses, and spinal cord BOLD responses to short heat pain stimuli (1s duration) using the intraclass correlation coefficient (ICC).
View Article and Find Full Text PDFBackground: Primary adrenal insufficiency (PAI) mortality and morbidity remain unacceptably high, possibly arising as glucocorticoid replacement does not replicate natural physiology. A pulsatile subcutaneous pump can closely replicate cortisol's circadian and ultradian rhythm.
Objectives: To assess the effect of pump therapy on quality of life, mood, functional neuroimaging, behavioural/cognitive responses, sleep and metabolism.
The investigation of spontaneous fluctuations of the blood-oxygen-level-dependent (BOLD) signal has recently been extended from the brain to the spinal cord, where it has stimulated interest from a clinical perspective. A number of resting-state functional magnetic resonance imaging (fMRI) studies have demonstrated robust functional connectivity between the time series of BOLD fluctuations in bilateral dorsal horns and between those in bilateral ventral horns, in line with the functional neuroanatomy of the spinal cord. A necessary step prior to extension to clinical studies is assessing the reliability of such resting-state signals, which we aimed to do here in a group of 45 healthy young adults at the clinically prevalent field strength of 3T.
View Article and Find Full Text PDFC-C motif chemokine receptor-like 2 (CCRL2) is a non-signaling 7 transmembrane receptor that binds chemotactic ligands to shape leukocyte recruitment to sites of inflammation. However, there is a lack of consensus on the ligands that directly bind CCRL2 or their functional impact. Studies with CCRL2 knockout mice have demonstrated that neutrophils have impaired degranulation and migration in response to CXCL8, where the underlying molecular mechanism is proposed to be due to the formation of CCRL2 heterodimers with the chemokine receptor CXCR2.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2023
Objective: Neonatal imaging studies report corpus callosum abnormalities after neonatal hypoxic-ischaemic encephalopathy (HIE), but corpus callosum development and relation to cognition in childhood are unknown. Using magnetic resonance imaging (MRI), we examined the relationship between corpus callosum size, microstructure and cognitive and motor outcomes at early school-age children cooled for HIE (cases) without cerebral palsy compared to healthy, matched controls. A secondary aim was to examine the impact of HIE-related neonatal brain injury on corpus callosum size, microstructure and growth.
View Article and Find Full Text PDFAim: To investigate whether brain volumes were reduced in children aged 6 to 8 years without cerebral palsy, who underwent therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy (patients), and matched controls, and to examine the relation between subcortical volumes and functional outcome.
Method: We measured regional brain volumes in 31 patients and 32 controls (median age 7 years and 7 years 2 months respectively) from T1-weighted magnetic resonance imaging (MRI). We assessed cognition using the Wechsler Intelligence Scales for Children, Fourth Edition and motor ability using the Movement Assessment Battery for Children, Second Edition (MABC-2).
Background: Physical activity interventions have had varying results on modifying hippocampal volume.
Methods: The Retirement in Action (REACT) study conducted a randomised-controlled trial of a 12-month physical activity and behaviour maintenance intervention in older adults at risk of mobility impairments. The physical activity sessions were delivered twice weekly for the first twelve weeks, and then reduced to once weekly, to groups of 15 participants.
Pain perception is decreased by shifting attentional focus away from a threatening event. This attentional analgesia engages parallel descending control pathways from anterior cingulate (ACC) to locus coeruleus, and ACC to periaqueductal grey (PAG) - rostral ventromedial medulla (RVM), indicating possible roles for noradrenergic or opioidergic neuromodulators. To determine which pathway modulates nociceptive activity in humans, we used simultaneous whole brain-spinal cord pharmacological-fMRI (N = 39) across three sessions.
View Article and Find Full Text PDFCerebellar damage during posterior fossa surgery in children can lead to ataxia and risk of cerebellar mutism syndrome. Compartmentalisation of sensorimotor and cognitive functions within the cerebellum have been demonstrated in animal electrophysiology and human imaging studies. Electrophysiological monitoring was carried out under general anaesthesia to assess the limb sensorimotor representation within the human cerebellum for assessment of neurophysiological integrity to reduce the incidence of surgical morbidities.
View Article and Find Full Text PDFTherapeutic hypothermia reduces the incidence of severe motor disability, such as cerebral palsy, following neonatal hypoxic-ischaemic encephalopathy. However, cooled children without cerebral palsy at school-age demonstrate motor deficits and altered white matter connectivity. In this study, we used diffusion-weighted imaging to investigate the relationship between white matter connectivity and motor performance, measured using the Movement Assessment Battery for Children-2, in children aged 6-8 years treated with therapeutic hypothermia for neonatal hypoxic-ischaemic encephalopathy at birth, who did not develop cerebral palsy (cases), and matched typically developing controls.
View Article and Find Full Text PDFDiffusion magnetic resonance imaging (MRI) allows noninvasive assessment of white matter connectivity in typical development and of changes due to brain injury or pathology. Probabilistic white matter atlases allow diffusion metrics to be measured in specific white matter pathways, and are a critical component in spatial normalization for group analysis. However, given the known developmental changes in white matter it may be suboptimal to use an adult template when assessing data acquired from children.
View Article and Find Full Text PDFFibromyalgia is a prevalent pain condition that is associated with cognitive impairments including in attention, memory, and executive processing. It has been proposed that fibromyalgia may be caused by altered central pain processing characterised by a loss of endogenous pain modulation. We tested whether attentional analgesia, where cognitive engagement diminishes pain percept, was attenuated in patients with fibromyalgia (n = 20) compared with matched healthy controls (n = 20).
View Article and Find Full Text PDFTherapeutic hypothermia following neonatal encephalopathy due to birth asphyxia reduces death and cerebral palsy. However, school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy still have reduced performance on cognitive and motor tests, attention difficulties, slower reaction times and reduced visuo-spatial processing abilities compared to typically developing controls. We acquired diffusion-weighted imaging data from school-age children without cerebral palsy treated with therapeutic hypothermia for neonatal encephalopathy at birth, and a matched control group.
View Article and Find Full Text PDFThis article reviews and categorises early policy responses to the COVID-19 pandemic, based on a dataset of 496 measures taken by 54 countries between January 1 and April 28 and collected by the OECD from government officials and additional sources. Findings show a large diversity of measures, some of which were urgent and necessary, some that may continue to be beneficial once the pandemic has subsided, while others are potentially disruptive for the functioning of markets or damaging for the environment. National allocations of measures show differences between developed OECD countries, which used more agriculture or support related measures, and emerging economies, which focused on trade policies, information provision or food assistance.
View Article and Find Full Text PDFPsychoneuroendocrinology
February 2021
Adrenal glucocorticoid secretion into the systematic circulation is characterised by a complex rhythm, composed of the diurnal variation, formed by changes in pulse amplitude of an underlying ultradian rhythm of short duration hormonal pulses. To elucidate the potential neurobiological significance of glucocorticoid pulsatility in man, we have conducted a randomised, double-blind, placebo-controlled, three-way crossover clinical trial on 15 healthy volunteers, investigating the impact of different glucocorticoid rhythms on measures of mood and neural activity under resting conditions by recruiting functional neuroimaging, computerised behavioural tests and ecological momentary assessments. Endogenous glucocorticoid biosynthesis was pharmacologically suppressed, and plasma levels of corticosteroid restored by hydrocortisone replacement in three different regimes, either mimicking the normal ultradian and circadian profile of the hormone, or retaining the normal circadian but abolishing the ultradian rhythm of the hormone, or by our current best oral replacement regime which results in a suboptimal circadian and ultradian rhythm.
View Article and Find Full Text PDFNeuroimage
February 2021
Pain demands attention, yet pain can be reduced by focusing attention elsewhere. The neural processes involved in this robust psychophysical phenomenon, attentional analgesia, are still being defined. Our previous fMRI study linked activity in the brainstem triad of locus coeruleus (LC), rostral ventromedial medulla (RVM) and periaqueductal grey (PAG) with attentional analgesia.
View Article and Find Full Text PDF