98%
921
2 minutes
20
Non-painful tactile sensory stimuli are processed in the cortex, subcortex, and brainstem. Recent functional magnetic resonance imaging (fMRI) studies have highlighted the value of whole-brain, systems-level investigation for examining pain processing. However, whole-brain fMRI studies are uncommon, in part due to challenges with signal to noise when studying the brainstem. Furthermore, the differentiation of small sensory brainstem structures such as the cuneate and gracile nuclei necessitates high resolution imaging. To address this gap in systems-level sensory investigation, we employed a whole-brain, multi-echo fMRI acquisition at 3T with multi-echo independent component analysis (ME-ICA) denoising and brainstem-specific modeling to enable detection of activation across the entire sensory system. In healthy participants, we examined patterns of activity in response to non-painful brushing of the right hand, left hand, and right foot, and found the expected lateralization, with distinct cortical and subcortical responses for upper and lower limb stimulation. At the brainstem level, we were able to differentiate the small, adjacent cuneate and gracile nuclei, corresponding to hand and foot stimulation respectively. Our findings demonstrate that simultaneous cortical, subcortical, and brainstem mapping at 3T could be a key tool to understand the sensory system in both healthy individuals and clinical cohorts with sensory deficits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11042175 | PMC |
http://dx.doi.org/10.1101/2024.04.11.589099 | DOI Listing |
Eur J Neurol
September 2025
Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
Background: Frontotemporal dementia (FTD) encompasses diverse clinical phenotypes, primarily characterized by behavioral and/or language dysfunction. A newly characterized variant, semantic behavioral variant FTD (sbvFTD), exhibits predominant right temporal atrophy with features bridging behavioral variant FTD (bvFTD) and semantic variant primary progressive aphasia (svPPA). This study investigates the longitudinal structural MRI correlates of these FTD variants, focusing on cortical and subcortical structural damage to aid differential diagnosis and prognosis.
View Article and Find Full Text PDFNeurochirurgie
September 2025
Necker Hospital, Departments of Pediatric Neurosurgery, Radiology, Pediatric Neurology and Anesthesiology; Reference Center for Rare Epilepsies CRéER, Member of ERN Epicare; APHP, Paris, France; Université de Paris Cité, Paris, France; Institut Imagine, INSERM U1163, Paris, France; Paris Kids Can
Introduction: Laser Interstitial Thermal Therapy under MRI control has emerged as a safe and efficient alternative to microsurgery in epilepsy and neurooncology procedures. Yet it has been used only recently in seldom European centers. Here, we report our 4 years' experience with LITT in children (complications, epileptic and oncologic outcomes).
View Article and Find Full Text PDFInfant Behav Dev
September 2025
Center for Mind and Brain, University of California, Davis, USA; Department of Psychology, University of California, Davis, USA.
At the beginning of the twenty-first century, the primary view of infant visual attention development focused on a transition across the first postnatal year from being stimulus-driven to goal-driven, reflecting a broader shift from subcortical to cortical control. This perspective was supported by decades of infant looking-time studies. However, our understanding of infant attention has significantly evolved over the past 25 years, shaped by both theoretical advancements and new technological and methodological tools.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht, the Netherlands. Electronic address:
Speech brain-computer interfaces (BCIs) offer a solution for those affected by speech impairments by decoding brain activity into speech. Current neuroprosthetics focus on the motor cortex, which might not be suitable for all patient populations. We investigate potential alternative targets for a speech BCI across a brain-wide distribution.
View Article and Find Full Text PDFEpilepsy is a network disorder characterized by dynamic interactions between cortical and subcortical circuits that collectively facilitate seizure initiation, propagation, maintenance, and termination. While cortical structures have traditionally dominated epilepsy research, diagnostic evaluation, and therapeutic targets, recent years have witnessed growth in exploring the role of subcortical structures beyond the well-studied limbic system for several decades. Structures such as the thalamus have emerged as critical nodes in epileptic networks, with growing evidence from neuromodulation studies underscoring its critical role in seizure dynamics.
View Article and Find Full Text PDF