Publications by authors named "John Sundh"

Vitamin B1 (thiamin, B1) is an essential micronutrient for cells, yet intriguingly in aquatic systems most bacterioplankton are unable to synthesize it (auxotrophy), requiring an exogenous source. Cycling of this valuable metabolite in aquatic systems has not been fully investigated and vitamers (B1-related compounds) have only begun to be measured and incorporated into the B1 cycle. Here, we identify potential key producers and consumers of B1 and gain new insights into the dynamics of B1 cycling through measurements of B1 and vitamers (HMP: 4-amino-5-hydroxymethyl-2-methylpyrimidine, HET: 4-methyl-5-thiazoleethanol, FAMP: -formyl-4-amino-5-aminomethyl-2-methylpyrimidine) in the particulate and dissolved pool in a temperate coastal system.

View Article and Find Full Text PDF

Single-cell transcriptomics has the potential to provide novel insights into poorly studied microbial eukaryotes. Although several such technologies are available and benchmarked on mammalian cells, few have been tested on protists. Here, we applied a microarray single-cell sequencing (MASC-seq) technology, that generates microscope images of cells in parallel with capturing their transcriptomes, on three species representing important plankton groups with different cell structures; the ciliate Tetrahymena thermophila, the diatom Phaeodactylum tricornutum, and the dinoflagellate Heterocapsa sp.

View Article and Find Full Text PDF

Sponges are among the earliest branching extant animals. As such, genetic data from this group are valuable for understanding the evolution of various traits and processes in other animals. However, like many marine organisms, they are notoriously difficult to sequence, and hence, genomic data are scarce.

View Article and Find Full Text PDF

Carbon storage and cycling in boreal forests-the largest terrestrial carbon store-is moderated by complex interactions between trees and soil microorganisms. However, existing methods limit our ability to predict how changes in environmental conditions will alter these associations and the essential ecosystem services they provide. To address this, we developed a metatranscriptomic approach to analyze the impact of nutrient enrichment on Norway spruce fine roots and the community structure, function, and tree-microbe coordination of over 350 root-associated fungal species.

View Article and Find Full Text PDF

In this study, we examined transporter genes in metagenomic and metatranscriptomic data from a time-series survey in the temperate marine environment of the Baltic Sea. We analyzed the abundance and taxonomic distribution of transporters in the 3μm-0.2μm size fraction comprising prokaryotes and some picoeukaryotes.

View Article and Find Full Text PDF

While oligotrophic deep groundwaters host active microbes attuned to the low-end of the bioenergetics spectrum, the ecological constraints on microbial niches in these ecosystems and their consequences for microbiome convergence are unknown. Here, we provide a genome-resolved, integrated omics analysis comparing archaeal and bacterial communities in disconnected fracture fluids of the Fennoscandian Shield in Europe. Leveraging a dataset that combines metagenomes, single cell genomes, and metatranscriptomes, we show that groundwaters flowing in similar lithologies offer fixed niches that are occupied by a common core microbiome.

View Article and Find Full Text PDF

The health, growth, and fitness of boreal forest trees are impacted and improved by their associated microbiomes. Microbial gene expression and functional activity can be assayed with RNA sequencing (RNA-Seq) data from host samples. In contrast, phylogenetic marker gene amplicon sequencing data are used to assess taxonomic composition and community structure of the microbiome.

View Article and Find Full Text PDF

Segmented filamentous bacteria (SFB) are unique immune modulatory bacteria colonizing the small intestine of a variety of animals in a host-specific manner. SFB exhibit filamentous growth and attach to the host's intestinal epithelium, offering a physical route of interaction. SFB affect functions of the host immune system, among them IgA production and T-cell maturation.

View Article and Find Full Text PDF

Feruloyl esterases (FAEs) can reduce the recalcitrance of lignocellulosic biomass to enzymatic hydrolysis, thereby enhancing biorefinery potentials or animal feeding values of the biomass. In addition, ferulic acid, a product of FAE activity, has applications in pharmaceutical and food/beverage industries. It is therefore of great interest to identify new FAEs to enhance understanding about this enzyme family.

View Article and Find Full Text PDF

Vitamin B1 (B1 herein) is a vital enzyme cofactor required by virtually all cells, including bacterioplankton, which strongly influence aquatic biogeochemistry and productivity and modulate climate on Earth. Intriguingly, bacterioplankton can be de novo B1 synthesizers or B1 auxotrophs, which cannot synthesize B1 de novo and require exogenous B1 or B1 precursors to survive. Recent isolate-based work suggests select abundant bacterioplankton are B1 auxotrophs, but direct evidence of B1 auxotrophy among natural communities is scant.

View Article and Find Full Text PDF

The Baltic Sea is one of the world's largest brackish water bodies and is characterised by pronounced physicochemical gradients where microbes are the main biogeochemical catalysts. Meta-omic methods provide rich information on the composition of, and activities within, microbial ecosystems, but are computationally heavy to perform. We here present the Baltic Sea Reference Metagenome (BARM), complete with annotated genes to facilitate further studies with much less computational effort.

View Article and Find Full Text PDF

Cyanobacteria are important phytoplankton in the Baltic Sea, an estuarine-like environment with pronounced north to south gradients in salinity and nutrient concentrations. Here, we present a metagenomic and -transcriptomic survey, with subsequent analyses targeting the genetic identity, phylogenetic diversity, and spatial distribution of Baltic Sea cyanobacteria. The cyanobacterial community constituted close to 12% of the microbial population sampled during a pre-bloom period (June-July 2009).

View Article and Find Full Text PDF

Metacaspases are distant homologs of metazoan caspase proteases, implicated in stress response, and programmed cell death (PCD) in bacteria and phytoplankton. While the few previous studies on metacaspases have relied on cultured organisms and sequenced genomes, no studies have focused on metacaspases in a natural setting. We here present data from the first microbial community-wide metacaspase survey; performed by querying metagenomic and metatranscriptomic datasets from the brackish Baltic Sea, a water body characterized by pronounced environmental gradients and periods of massive cyanobacterial blooms.

View Article and Find Full Text PDF