Background: The International Vaccine Institute-led CAPTURA (Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia) project delivered capacity building activities to strengthen antimicrobial resistance surveillance activities in Nepal.
Methods: The CAPTURA project trained 97 laboratory personnel from 19 hospitals on the use of WHONET/BacLink software to manage microbiology data in Nepal during 2020-2021. Approximately two years later, the trainees were followed up by phone to assess implementation status and effectiveness of the training.
PLOS Glob Public Health
March 2025
The information on notifiable diseases in low- and middle-income countries is often incomplete, limiting our understanding of their epidemiology. Our study addresses this knowledge gap by analyzing microbiology laboratory and hospital admission data from 111 of 127 public referral hospitals in Thailand, excluding Bangkok, from January to December 2022. We evaluated factors associated with the incidence of notifiable bacterial diseases (NBDs) caused by 11 pathogens; including Brucella spp.
View Article and Find Full Text PDFThe analysis and visualisation of antimicrobial resistance (AMR) surveillance data is a crucial challenge, especially in high-burden, low-middle-income countries. We describe the design, development, integration, and implementation of the Quick Analysis of Antimicrobial Patterns and Trends (QAAPT) tool for AMR data analysis and visualisation. The QAAPT tool was created by the Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia project, led by the International Vaccine Institute (IVI).
View Article and Find Full Text PDFAntibacterial resistance (ABR) poses significant challenges to combating infections worldwide. ABR drivers are interconnected, complicating identification of intervention points. Researchers need a systems-based perspective that considers interrelated drivers collectively.
View Article and Find Full Text PDFSurveillance of antimicrobial resistance (AMR) is a crucial strategy to combat AMR. Using routine surveillance data, we could detect and control hospital outbreaks of AMR bacteria as early as possible. Previously, we developed a framework for automatic detection of clusters of AMR bacteria using SaTScan, a free cluster detection tool integrated into WHONET.
View Article and Find Full Text PDFObjectives: To evaluate the frequency of antimicrobial-resistant bloodstream infections (AMR BSI) in Thailand.
Methods: We analyzed data from 2022, generated by 111 public hospitals in health regions 1 to 12, using the AutoMated tool for Antimicrobial resistance Surveillance System (AMASS), and submitted to the Ministry of Public Health, Thailand. Multilevel Poisson regression models were used.
Antimicrobial resistance poses a significant challenge to public health globally, leading to increased morbidity and mortality. AMR surveillance involves the systematic collection, analysis, and interpretation of data on the occurrence and distribution of AMR in humans, animals, and the environment for action. The West African Health Organization, part of the Economic Community of West African States (ECOWAS), is committed to addressing AMR in the region.
View Article and Find Full Text PDFBackground: Detection and containment of hospital outbreaks currently depend on variable and personnel-intensive surveillance methods. Whether automated statistical surveillance for outbreaks of health care-associated pathogens allows earlier containment efforts that would reduce the size of outbreaks is unknown.
Methods: We conducted a cluster-randomized trial in 82 community hospitals within a larger health care system.
There are few studies comparing proportion, frequency, mortality and mortality rate following antimicrobial-resistant (AMR) infections between tertiary-care hospitals (TCHs) and secondary-care hospitals (SCHs) in low and middle-income countries (LMICs) to inform intervention strategies. The aim of this study is to demonstrate the utility of an offline tool to generate AMR reports and data for a secondary data analysis. We conducted a secondary-data analysis on a retrospective, multicentre data of hospitalised patients in Thailand.
View Article and Find Full Text PDFBackground: In low- and middle-income countries, antibiotics are often prescribed for patients with symptoms of urinary tract infections (UTIs) without microbiological confirmation. Inappropriate antibiotic use can contribute to antimicrobial resistance (AMR) and the selection of MDR bacteria. Data on antibiotic susceptibility of cultured bacteria are important in drafting empirical treatment guidelines and monitoring resistance trends, which can prevent the spread of AMR.
View Article and Find Full Text PDFThe Institute of Epidemiology, Disease Control and Research (IEDCR) conducts active, case-based national antimicrobial resistance (AMR) surveillance in Bangladesh. The Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project accessed aggregated retrospective data from non-IEDCR study sites and 9 IEDCR sites to understand the pattern and extent of AMR and to use analyzed data to guide ongoing and future national AMR surveillance in both public and private laboratories. Record-keeping practices, data completeness, quality control, and antimicrobial susceptibility test practices were investigated in all laboratories participating in case-based IEDCR surveillance and laboratory-based CAPTURA sites.
View Article and Find Full Text PDFClin Infect Dis
December 2023
Antimicrobial resistance (AMR) is a growing global public health challenge associated with 4.95 million deaths in 2019 and an estimated 10 million deaths per year by 2050 in the absence of coordinated action. A robust AMR surveillance system is therefore required to avert such a scenario.
View Article and Find Full Text PDFClin Infect Dis
December 2023
Background: In 2015, the UK government established the Fleming Fund with the aim to address critical gaps in surveillance of antimicrobial resistance (AMR) in low- and middle-income countries in Asia and Africa. Among a large portfolio of grants, the Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was awarded with the specific objective of expanding the volume of historical data on AMR, consumption (AMC), and use (AMU) in the human healthcare sector across 12 countries in South and Southeast Asia.
Methods: Starting in early 2019, the CAPTURA consortium began working with local governments and >100 relevant data-holding facilities across the region to identify, assess for quality, prioritize, and subsequently retrieve data on AMR, AMC, and AMU.
Data on antimicrobial resistance (AMR) from sites not participating in the National AMR surveillance network, conducted by National Public Health Laboratory (NPHL), remain largely unknown in Nepal. The "Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia" (CAPTURA) assessed AMR data from previously untapped data sources in Nepal. A retrospective cross-sectional data review was carried out for the AMR data recorded between January 2017 and December 2019 to analyze AMR data from 26 hospital-based laboratories and 2 diagnostic laboratories in Nepal.
View Article and Find Full Text PDFAntimicrobial resistance (AMR) is a multifaceted global health problem disproportionately affecting low- and middle-income countries (LMICs). The Capturing data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project was tasked to expand the volume of AMR and antimicrobial use data in Asia. The CAPTURA project used 2 data-collection streams: facility data and project metadata.
View Article and Find Full Text PDFIn response to the global threat of antimicrobial resistance (AMR), the Capturing Data on Antimicrobial Resistance Patterns and Trends in Use in Regions of Asia (CAPTURA) project worked with microbiology laboratories, pharmacies, and local governments in South Asia and Southeast Asia to expand the volume of historical and current data available on AMR and antimicrobial use and to identify gaps in data and areas for quality improvement. When the CAPTURA project completed its country-level engagement in the first half of 2022, the consortium brought together local, regional, and global AMR stakeholders for a virtual regional workshop to review data outputs from the project and share strategies to inform national and regional efforts to combat AMR. This paper summarizes the main topics presented in the workshop held from 28 to 30 June 2022.
View Article and Find Full Text PDFBackground: An effective implementation of antimicrobial resistance (AMR) surveillance projects requires sustainable and multidisciplinary engagement with stakeholders from various backgrounds, interests and aims. The "Capturing Data on Antimicrobial resistance Patterns and Trends in Use in Regions of Asia" (CAPTURA) project, funded by the Fleming Fund, initially targeted 12 countries in South Asia (SA) and Southeast Asia (SEA) to "expand the volume of historical and current data on AMR and antimicrobial usage" and support local agencies through capacity building activities.
Methods: In this article, we focus on early stakeholder engagement activities and present overall statistics on AMR data collated from 72 laboratories across seven countries.
AMR is a major public health concern that calls for extensive work and a multidisciplinary team approach. The high prevalence of infectious diseases in African nations leads to widespread antibiotic usage and eventual antimicrobial resistance, which has significant negative effects on people's health, the economy, and society. Additionally, inadequate or nonexistent antimicrobial drug regulations, inappropriate prescription practices, and restrictions on public health prevention initiatives such as immunization, water and sanitation, and sexual health may all contribute to the emergence of AMR.
View Article and Find Full Text PDFIntroduction: Culture is the gold-standard diagnosis for urinary tract infections (UTIs). However, most hospitals in low-resource countries lack adequately equipped laboratories and relevant expertise to perform culture and, therefore, rely heavily on dipstick tests for UTI diagnosis.
Research Gap: In many Kenyan hospitals, routine evaluations are rarely done to assess the accuracy of popular screening tests such as the dipstick test.
Background: A key factor driving the development and maintenance of antibacterial resistance (ABR) is individuals' use of antibiotics (ABs) to treat illness. To better understand motivations and context for antibiotic use we use the concept of a patient treatment-seeking pathway: a treatment journey encompassing where patients go when they are unwell, what motivates their choices, and how they obtain antibiotics. This paper investigates patterns and determinants of patient treatment-seeking pathways, and how they intersect with AB use in East Africa, a region where ABR-attributable deaths are exceptionally high.
View Article and Find Full Text PDFBackground: Evidence-based empirical antibiotic prescribing requires knowledge of local antimicrobial resistance patterns. The spectrum of pathogens and their susceptibility strongly influences guidelines for empirical therapies for urinary tract infections (UTI) management.
Objective: This study aimed to determine the prevalence of UTI causative bacteria and their corresponding antibiotic resistance profiles in three counties of Kenya.
Background: Poverty is a proposed driver of antimicrobial resistance, influencing inappropriate antibiotic use in low-income and middle-income countries (LMICs). However, at subnational levels, studies investigating multidimensional poverty and antibiotic misuse are sparse, and the results are inconsistent. We aimed to investigate the relationship between multidimensional poverty and antibiotic use in patient populations in Kenya, Tanzania, and Uganda.
View Article and Find Full Text PDFAntimicrob Resist Infect Control
October 2022
Background: Antimicrobial resistance (AMR) is a major public health challenge with its impact felt disproportionately in Western Sub-Saharan Africa. Routine microbiology investigations serve as a rich source of AMR monitoring and surveillance data. Geographical variations in susceptibility patterns necessitate regional and institutional tracking of resistance patterns to aid in tailored Antimicrobial Stewardship (AMS) interventions to improve antibiotic use in such settings.
View Article and Find Full Text PDFTrans R Soc Trop Med Hyg
December 2022
Background: Increasing antimicrobial resistance (AMR) in Salmonella has been observed in the Philippines. We aimed to characterise the population and AMR mechanisms of Salmonella with whole genome sequencing (WGS) and compare it with laboratory surveillance methods.
Methods: The serotype, multilocus sequence type, AMR genes and relatedness between isolates were determined from the genomes of 148 Salmonella Typhi (S.