Publications by authors named "John Reader"

Endothelial homeostasis is a central feature of vascular health. The vascular endothelium is under constant mechanical stress resulting from blood flow and, therefore, requires a high degree of resilience to adapt to stresses and resist development of disease. In this review, we discuss the molecular mechanisms by which the endothelium maintains proteostasis in response to haemodynamic forces by regulating three key areas: protein synthesis, recycling and degradation.

View Article and Find Full Text PDF

The repertoire of extratranslational functions of components of the protein synthesis apparatus is expanding to include control of key cell signaling networks. However, very little is known about noncanonical functions of members of the protein synthesis machinery in regulating cellular mechanics. We demonstrate that the eukaryotic initiation factor 6 (eIF6) modulates cellular mechanobiology.

View Article and Find Full Text PDF

Bipedal trackways discovered in 1978 at Laetoli site G, Tanzania and dated to 3.66 million years ago are widely accepted as the oldest unequivocal evidence of obligate bipedalism in the human lineage. Another trackway discovered two years earlier at nearby site A was partially excavated and attributed to a hominin, but curious affinities with bears (ursids) marginalized its importance to the paleoanthropological community, and the location of these footprints fell into obscurity.

View Article and Find Full Text PDF

The response of endothelial cells to mechanical forces is a critical determinant of vascular health. Vascular pathologies, such as atherosclerosis, characterized by abnormal mechanical forces are frequently accompanied by endothelial-to-mesenchymal transition (EndMT). However, how forces affect the mechanotransduction pathways controlling cellular plasticity, inflammation, and, ultimately, vessel pathology is poorly understood.

View Article and Find Full Text PDF

The article traces developments since the publication of John Reader's (2017) with the aim of establishing conceptual resources that link concerns for the environment with those for digital technology. Drawing on the work of Bruno Latour and Bernard Stiegler, it proposes they share a common concern to provide an 'earthing' or form of practical knowledge to shape the discourses in both fields. It then addresses the question of why it remains difficult to operationalize appropriate responses and the concepts of disinhibition (Latour and for Stiegler) and autoimmunity (Derrida) offer possible explanations.

View Article and Find Full Text PDF

This collectively written article explores postdigital relationships between science, philosophy, and religion within the continuum of enchantment, disenchantment, and re-enchantment. Contributions are broadly classified within four sections related to academic fields of philosophy, theology, critical theory, and postdigital studies. The article reveals complex and nuanced relationships between various disciplinary perspectives, religions, and political positions, and points towards lot of commonalities between their views to the enchantment, disenchantment, re-enchantment continuum.

View Article and Find Full Text PDF

Mechanical forces acting on biological systems, at both the macroscopic and microscopic levels, play an important part in shaping cellular phenotypes. There is a growing realization that biomolecules that respond to force directly applied to them, or via mechano-sensitive signalling pathways, can produce profound changes to not only transcriptional pathways, but also in protein translation. Forces naturally occurring at the molecular level can impact the rate at which the bacterial ribosome translates messenger RNA (mRNA) transcripts and influence processes such as co-translational folding of a nascent protein as it exits the ribosome.

View Article and Find Full Text PDF

The cardiovascular system can sense and adapt to changes in mechanical stimuli by remodeling the physical properties of the heart and blood vessels in order to maintain homeostasis. Imbalances in mechanical forces and/or impaired sensing are now not only implicated but are, in some cases, considered to be drivers for the development and progression of cardiovascular disease. There is now growing evidence to highlight the role of mechanical forces in the regulation of protein translation pathways.

View Article and Find Full Text PDF

Shear stress on arteries produced by blood flow is important for vascular development and homeostasis but can also initiate atherosclerosis. Endothelial cells that line the vasculature use molecular mechanosensors to directly detect shear stress profiles that will ultimately lead to atheroprotective or atherogenic responses. Plexins are key cell-surface receptors of the semaphorin family of cell-guidance signalling proteins and can regulate cellular patterning by modulating the cytoskeleton and focal adhesion structures.

View Article and Find Full Text PDF

Fibronectin (FN) assembly and fibrillogenesis are critically important in both development and the adult organism, but their importance in vascular functions is not fully understood. Here we identify a novel pathway by which haemodynamic forces regulate FN assembly and fibrillogenesis during vascular remodelling. Induction of disturbed shear stress in vivo and in vitro resulted in complex FN fibril assembly that was dependent on the mechanosensor PECAM.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers optimized a series of compounds to identify a potent and selective oral CHK1 inhibitor for preclinical development, showing effectiveness as both a chemotherapy enhancer and a standalone treatment.
  • The optimization process involved evaluating the compounds' cellular mechanisms to ensure selectivity, leading to the discovery of a highly selective ATP competitive inhibitor.
  • It was determined that changes in lipophilicity and basicity influenced both CHK1 potency and potential side effects on the hERG ion channel, resulting in a compound with favorable pharmacokinetic properties and low expected doses for human use.
View Article and Find Full Text PDF

CCT245737 is the first orally active, clinical development candidate CHK1 inhibitor to be described. The IC50 was 1.4 nM against CHK1 enzyme and it exhibited>1,000-fold selectivity against CHK2 and CDK1.

View Article and Find Full Text PDF

Periplasmic binding proteins (PBPs) in association with ABC transporters select and import a wide variety of ligands into bacterial cytoplasm. They can also take up toxic molecules, as observed in the case of the phytopathogen Agrobacterium tumefaciens strain C58. This organism contains a PBP called AccA that mediates the import of the antibiotic agrocin 84, as well as the opine agrocinopine A that acts as both a nutrient and a signalling molecule for the dissemination of virulence genes through quorum-sensing.

View Article and Find Full Text PDF

Transfer RNAs (tRNAs) are central players in the protein translation machinery and as such are prominent targets for a large number of natural and synthetic antibiotics. This review focuses on the role of tRNAs in bacterial antibiosis. We will discuss examples of antibiotics that target multiple stages in tRNA biology from tRNA biogenesis and modification, mature tRNAs, aminoacylation of tRNA as well as prevention of proper tRNA function by small molecules binding to the ribosome.

View Article and Find Full Text PDF

A naturally-occurring fragment of tyrosyl-tRNA synthetase (TyrRS) has been shown in higher eukaryotes to 'moonlight' as a pro-angiogenic cytokine in addition to its primary role in protein translation. Pro-angiogenic cytokines have previously been proposed to be promising therapeutic mechanisms for the treatment of myocardial infarction. Here, we show that systemic delivery of the natural fragment of TyRS, mini-TyrRS, improves heart function in mice after myocardial infarction.

View Article and Find Full Text PDF

Psoriasis is a chronic autoimmune disease affecting the skin and characterized by aberrant keratinocyte proliferation and function. Immune cells infiltrate the skin and release proinflammatory cytokines that play important roles in psoriasis. The Th17 network, including IL-23 and IL-22, has recently emerged as a critical component in the pathogenesis of psoriasis.

View Article and Find Full Text PDF

Endothelial cells (ECs) lining blood vessels express many mechanosensors, including platelet endothelial cell adhesion molecule-1 (PECAM-1), that convert mechanical force into biochemical signals. While it is accepted that mechanical stresses and the mechanical properties of ECs regulate vessel health, the relationship between force and biological response remains elusive. Here we show that ECs integrate mechanical forces and extracellular matrix (ECM) cues to modulate their own mechanical properties.

View Article and Find Full Text PDF

Aminoacyl-tRNA synthetases (AARSs) play a pivotal role in protein synthesis and cell viability. These 22 "housekeeping" enzymes (1 for each standard amino acid plus pyrrolysine and o-phosphoserine) are specifically involved in recognizing and aminoacylating their cognate tRNAs in the cellular pool with the correct amino acid prior to delivery of the charged tRNA to the protein synthesis machinery. Besides serving this canonical function, higher eukaryotic AARSs, some of which are organized in the cytoplasm as a multisynthetase complex of nine enzymes plus additional cellular factors, have also been implicated in a variety of non-canonical roles.

View Article and Find Full Text PDF

Leucyl-tRNA synthetases (LeuRSs) have an essential role in translation and are promising targets for antibiotic development. Agrocin 84 is a LeuRS inhibitor produced by the biocontrol agent Agrobacterium radiobacter K84 that targets pathogenic strains of A. tumefaciens, the causative agent of plant tumours.

View Article and Find Full Text PDF

Inhibitors of checkpoint kinase 1 (CHK1) are of current interest as potential antitumor agents, but the most advanced inhibitor series reported to date are not orally bioavailable. A novel series of potent and orally bioavailable 3-alkoxyamino-5-(pyridin-2-ylamino)pyrazine-2-carbonitrile CHK1 inhibitors was generated by hybridization of two lead scaffolds derived from fragment-based drug design and optimized for CHK1 potency and high selectivity using a cell-based assay cascade. Efficient in vivo pharmacokinetic assessment was used to identify compounds with prolonged exposure following oral dosing.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a new medicine called CCT244747 that can help fight tumors by blocking a protein called CHK1, which helps cancer cells recover from damage.
  • They tested this medicine on mice with a type of cancer called neuroblastoma and found that it worked really well on its own and even better with other cancer drugs.
  • The results showed that CCT244747 not only damaged cancer cells more but also made them die off faster, proving it could be a promising treatment for cancer in future studies.
View Article and Find Full Text PDF

Pyrazolopyridine inhibitors with low micromolar potency for CHK1 and good selectivity against CHK2 were previously identified by fragment-based screening. The optimization of the pyrazolopyridines to a series of potent and CHK1-selective isoquinolines demonstrates how fragment-growing and scaffold morphing strategies arising from a structure-based understanding of CHK1 inhibitor binding can be combined to successfully progress fragment-derived hit matter to compounds with activity in vivo. The challenges of improving CHK1 potency and selectivity, addressing synthetic tractability, and achieving novelty in the crowded kinase inhibitor chemical space were tackled by multiple scaffold morphing steps, which progressed through tricyclic pyrimido[2,3-b]azaindoles to N-(pyrazin-2-yl)pyrimidin-4-amines and ultimately to imidazo[4,5-c]pyridines and isoquinolines.

View Article and Find Full Text PDF