Sensors (Basel)
October 2024
Coupling faults that simultaneously occur during the operation of mechanical equipment are widespread. These faults encompass a diverse range of high-order coupling relationships, involving multiple base fault types. Based on the advantages of hypergraphs for higher-order relationship descriptions, two coupling fault diagnosis architectures based on the hypergraph neural network are proposed in this paper: 1.
View Article and Find Full Text PDFSensors (Basel)
July 2024
Mechanical equipment is composed of several parts, and the interaction between parts exists throughout the whole life cycle, leading to the widespread phenomenon of fault coupling. The diagnosis of independent faults cannot meet the requirements of the health management of mechanical equipment under actual working conditions. In this paper, the dynamic vertex interpretable graph neural network (DIGNN) is proposed to solve the problem of coupling fault diagnosis, in which dynamic vertices are defined in the data topology.
View Article and Find Full Text PDFSensors (Basel)
December 2023
To tackle the problems of over-reliance on traditional experience, poor troubleshooting robustness, and slow response by maintenance personnel to changes in faults in the current aircraft health management field, this paper proposes the use of a knowledge graph. The knowledge graph represents troubleshooting in a new way. The aim of the knowledge graph is to improve the correlation between fault data by representing experience.
View Article and Find Full Text PDFThe protective activity of scopoletin (SPT) against glucose-induced cataract has been attributed to attenuation of aldose reductase activity and oxidative stress in a rat model. The present investigation was aimed to study the protective effect and mechanism of SPT in retinal ganglia cells (RGC) under oxidative stress and apoptosis induced by hyperglycemia. The RGC-5 cells were pre-conditioned with variable SPT concentrations for 6 hours and then subjected to hyperglycemia for 48 hours.
View Article and Find Full Text PDFCell Physiol Biochem
July 2018
Background/aims: In this study, the molecular mechanisms of miR-27b and lipoprotein lipase (LPL) that regulate human adipose-derived mesenchymal stem cells (hASCs) adipogenic differentiation were detected.
Methods: Microarray analysis was applied to screen for differentially expressed miRNAs and mRNA during hASCs adipocyte differentiation induction. MiR-27b and LPL were found to have abnormal expression.