Publications by authors named "Jin Billy Li"

Endogenous, long double-stranded RNA (dsRNA) can resemble viral dsRNA and be recognized by cytosolic dsRNA sensors, triggering autoimmunity. Genetic studies of rare, inherited human diseases and experiments using mouse models have established the importance of adenosine-to-inosine RNA editing by the enzyme adenosine deaminase acting on RNA 1 (ADAR1) as a critical safeguard against autoinflammatory responses to cellular dsRNA. More recently, human genetic studies have revealed that dsRNA editing and sensing mechanisms are involved in common inflammatory diseases, emphasizing the broader role of dsRNA in modulating immune responses and disease pathogenesis.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) editing of double-stranded RNA (dsRNA) by ADAR1 is an essential modifier of the immunogenicity of cellular dsRNA. The role of MDA5 in sensing unedited cellular dsRNA and the downstream activation of type I interferon (IFN) signaling are well established. However, we have an incomplete understanding of pathways that modify the response to unedited dsRNA.

View Article and Find Full Text PDF
Article Synopsis
  • Chemotherapy combined with immune checkpoint inhibitors (ICIs) is used to boost immunotherapy effectiveness, but certain tumors, especially triple-negative breast cancer (TNBC), often remain unresponsive.
  • The study identifies IRE1α, an ER stress sensor, as a key factor that limits the immune-boosting effects of taxane chemotherapy in these tumors by silencing double-stranded RNA (dsRNA) and preventing a type of inflammatory cell death called pyroptosis.
  • Inhibiting IRE1α allows taxane to produce more dsRNA, which activates immune responses, transforming PD-L1-negative TNBC tumors into ones that are sensitive to immunotherapy.
View Article and Find Full Text PDF

A-to-I RNA editing is a cellular mechanism that generates transcriptomic and proteomic diversity, which is essential for neuronal and immune functions. It involves the conversion of specific adenosines in RNA molecules to inosines, which are recognized as guanosines by cellular machinery. Despite the vast number of editing sites observed across the animal kingdom, pinpointing critical sites and understanding their in vivo functions remains challenging.

View Article and Find Full Text PDF

RNA base editing relies on the introduction of adenosine-to-inosine changes into target RNAs in a highly programmable manner in order to repair disease-causing mutations. Here, we propose that RNA base editing could be broadly applied to perturb protein function by removal of regulatory phosphorylation and acetylation sites. We demonstrate the feasibility on more than 70 sites in various signaling proteins and identify key determinants for high editing efficiency and potent down-stream effects.

View Article and Find Full Text PDF

Unlabelled: Mapping the genomic architecture of complex disease has been predicated on the understanding that genetic variants influence disease risk through modifying gene expression. However, recent discoveries have revealed that a significant burden of disease heritability in common autoinflammatory disorders and coronary artery disease (CAD) is mediated through genetic variation modifying post-transcriptional modification of RNA through adenosine-to-inosine (A-to-I) RNA editing. This common RNA modification is catalyzed by ADAR enzymes, where ADAR1 edits specific immunogenic double stranded RNA (dsRNA) to prevent activation of the double strand RNA (dsRNA) sensor MDA5 ( ) and stimulation of an interferon stimulated gene (ISG) response.

View Article and Find Full Text PDF
Article Synopsis
  • Adenosine-to-inosine RNA editing is a common RNA modification facilitated by enzymes ADAR1 and ADAR2, which helps identify double-stranded RNAs as 'self' to prevent immune system activation.
  • Recent research has revealed that ADAR1 also plays important roles beyond RNA editing in immune regulation.
  • The article discusses how ADAR1 influences immune receptors and its implications for diseases like autoimmune disorders and cancer.
View Article and Find Full Text PDF

Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity.

View Article and Find Full Text PDF

In the first of many thematic issues marking the 30 anniversary of Cell Chemical Biology, we highlight the contribution of chemical biology to RNA biology in a special issue on RNA modulation. We asked several leaders in the field to share their opinions on the current challenges and opportunities in RNA biology.

View Article and Find Full Text PDF

Effective immunity requires the innate immune system to distinguish foreign nucleic acids from cellular ones. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA-editing enzyme ADAR1 to evade being recognized as viral dsRNA by cytoplasmic dsRNA sensors, including MDA5 and PKR. The loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5.

View Article and Find Full Text PDF

ADAR deaminases catalyze adenosine-to-inosine (A-to-I) editing on double-stranded RNA (dsRNA) substrates that regulate an umbrella of biological processes. One of the two catalytically active ADAR enzymes, ADAR1, plays a major role in innate immune responses by suppression of RNA sensing pathways which are orchestrated through the ADAR1-dsRNA-MDA5 axis. Unedited immunogenic dsRNA substrates are potent ligands for the cellular sensor MDA5.

View Article and Find Full Text PDF

Effective immunity requires the innate immune system to distinguish foreign (non-self) nucleic acids from cellular (self) nucleic acids. Cellular double-stranded RNAs (dsRNAs) are edited by the RNA editing enzyme ADAR1 to prevent their dsRNA structure pattern being recognized as viral dsRNA by cytoplasmic dsRNA sensors including MDA5, PKR and ZBP1. A loss of ADAR1-mediated RNA editing of cellular dsRNA activates MDA5.

View Article and Find Full Text PDF

Under normal homeostatic conditions, self-double-stranded RNA (self-dsRNA) is modified by adenosine deaminase acting on RNA 1 (ADAR1) to prevent the induction of a type I interferon-mediated inflammatory cascade. Antigen-presenting cells (APCs) sense pathogen-associated molecular patterns, such as dsRNA, to activate the immune response. The impact of ADAR1 on the function of APCs and the consequences to immunity are poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • Alternative polyadenylation (APA) leads to the production of mRNA isoforms with varying lengths of 3' UTRs, which can affect gene expression in different cell types.
  • Researchers identified over 500 genes with long 3' UTRs in spermatogonia that switch to short 3' UTRs in spermatocytes due to APA, indicating a stage-specific regulation mechanism.
  • The choice of 3' cleavage site significantly impacts the translation and expression of proteins during cellular differentiation, suggesting that APA plays a crucial role in the development of sperm cells.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers investigated the role of ADAR-mediated RNA editing in understanding genetic variants linked to inflammatory diseases, highlighting its significance in disease mechanisms.
  • They identified over 30,000 cis-RNA editing quantitative trait loci (edQTLs) across different human tissues, revealing a strong connection with autoimmune diseases.
  • The study suggests that reduced RNA editing may enhance immune responses and inflammation, implicating dsRNA editing as an important, yet overlooked, factor in common inflammatory diseases.
View Article and Find Full Text PDF

RNA base editing represents a promising alternative to genome editing. Recent approaches harness the endogenous RNA-editing enzyme adenosine deaminase acting on RNA (ADAR) to circumvent problems caused by ectopic expression of engineered editing enzymes, but suffer from sequence restriction, lack of efficiency and bystander editing. Here we present in silico-optimized CLUSTER guide RNAs that bind their target messenger RNAs in a multivalent fashion, achieve editing with high precision and efficiency and enable targeting of sequences that were not accessible using previous gRNA designs.

View Article and Find Full Text PDF

Protein kinase activity must be precisely regulated, but how a cell governs hyperactive kinases remains unclear. In this study, we generated a constitutively active mitogen-activated protein kinase DYF-5 (DYF-5CA) in that disrupted sensory cilia. Genetic suppressor screens identified that mutations of ADR-2, an RNA adenosine deaminase, rescued ciliary phenotypes of We found that animals abnormally transcribed antisense RNAs that pair with messenger RNA (mRNA) to form double-stranded RNA, recruiting ADR-2 to edit the region ectopically.

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing catalyzed by ADAR enzymes occurs in double-stranded RNAs. Despite a compelling need towards predictive understanding of natural and engineered editing events, how the RNA sequence and structure determine the editing efficiency and specificity (i.e.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing is catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes that deaminate adenosine to inosine. Although many RNA editing sites are known, few trans regulators have been identified. We perform BioID followed by mass spectrometry to identify trans regulators of ADAR1 and ADAR2 in HeLa and M17 neuroblastoma cells.

View Article and Find Full Text PDF

Adenosine-to-inosine RNA editing, catalyzed by adenosine deaminase acting on RNA (ADAR) enzymes, alters RNA sequences from those encoded by DNA. These editing events are dynamically regulated, but few trans regulators of ADARs are known in vivo. Here, we screen RNA-binding proteins for roles in editing regulation with knockdown experiments in the Drosophila brain.

View Article and Find Full Text PDF

ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila Adar mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration.

View Article and Find Full Text PDF

RNA editing critically regulates neurodevelopment and normal neuronal function. The global landscape of RNA editing was surveyed across 364 schizophrenia cases and 383 control postmortem brain samples from the CommonMind Consortium, comprising two regions: dorsolateral prefrontal cortex and anterior cingulate cortex. In schizophrenia, RNA editing sites in genes encoding AMPA-type glutamate receptors and postsynaptic density proteins were less edited, whereas those encoding translation initiation machinery were edited more.

View Article and Find Full Text PDF

Three recent studies by Ishizuka et al. (2019), Liu et al. (2019), and Gannon et al.

View Article and Find Full Text PDF

Site-directed RNA editing might provide a safer or more effective alternative to genome editing in certain clinical scenarios. Until now, RNA editing has relied on overexpression of exogenous RNA editing enzymes or of endogenous human ADAR (adenosine deaminase acting on RNA) enzymes. Here we describe the engineering of chemically optimized antisense oligonucleotides that recruit endogenous human ADARs to edit endogenous transcripts in a simple and programmable way, an approach we call RESTORE (recruiting endogenous ADAR to specific transcripts for oligonucleotide-mediated RNA editing).

View Article and Find Full Text PDF

Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by ADAR enzymes, is a ubiquitous mechanism that generates transcriptomic diversity. This process is particularly important for proper neuronal function; however, little is known about how RNA editing is dynamically regulated between the many functionally distinct neuronal populations of the brain. Here, we present a spatial RNA editing map in the brain and show that different neuronal populations possess distinct RNA editing signatures.

View Article and Find Full Text PDF