The sluggish de-solvation reaction kinetics of hydrated ions and the occurrence of undesired water electrolysis on the electrode-electrolyte interface pose significant challenges to the practical deployment of aqueous supercapacitors. Interestingly, biological ion channels exhibit remarkable abilities to facilitate the de-solvation and low-energy transport of hydrated ions, and these are achieved through their size-limited confinement effects and electrostatic interactions. Inspired by such transit mechanisms of ion channels, we propose an interesting strategy to facilitate the rapid desolvation of electrode surface ions with low-energy transport.
View Article and Find Full Text PDFJ Am Chem Soc
February 2025
In aqueous-based electrochemical energy storage devices, uncontrolled hydrolysis of water at the electrochemical interfaces limits the application of such aqueous batteries or supercapacitors in business. The "water-in-salt" design is a valid strategy to broaden the electrochemical stability window in aqueous electrolytes, but drawbacks such as high manufacturing cost, high electrolyte viscosity, etc., also hinder its development.
View Article and Find Full Text PDFThe natural world renders a large number of opportunities to design intriguing structures and fascinating functions for innovations of advanced surfaces and interfaces. Currently, bioinspired interfaces have attracted much attention in practical applications of renewable energy storage and conversion devices including rechargeable batteries, fuel cells, dye-sensitized solar cells, and supercapacitors. By mimicking miscellaneous natural creatures, many novel bioinspired interfaces with various components, structures, morphology, and configurations are exerted on the devices' electrodes, electrolytes, additives, separators, and catalyst matrixes, resorting to their wonderful mechanical, optical, electrical, physical, chemical, and electrochemical features compared with the corresponding traditional modes.
View Article and Find Full Text PDFAqueous zinc ion batteries exhibit a promising application prospect for next-generation energy storage devices. However, the decomposition of active HO molecules on the Zn anode induces drastic dendrite formation, thereby impairing the performance for entire devices. To solve this challenge, we introduce subnanocyclic molecules of 15-Crown-5 as an additive into ZnSO electrolyte to stabilize the Zn anode.
View Article and Find Full Text PDFJ Phys Chem Lett
October 2023
Aqueous zinc-ion batteries are considered promising energy storage devices due to their superior electrochemical performance. Nevertheless, the uncontrolled dendrites and parasitic side reactions adversely affect the stability and durability of the Zn anode. To cope with these issues, inspired by the chelation behavior between metal ions and amino acids in the biological system, glutamic acid and aspartic acid are selected as electrolyte additives to stabilize the Zn anode.
View Article and Find Full Text PDFRechargeable aqueous zinc-ion batteries are regarded as promising energy storage devices due to their attractive economic benefits and extraordinary electrochemical performance. However, the sluggish Zn mass transfer behavior and water-induced parasitic reactions that occurred on the anode-electrode interface inevitably restrain their applications. Herein, inspired by the selective permeability and superior stability of plasma membrane, a thin UiO-66 metal-organic framework layer with smart aperture size is ex-situ decorated onto the Zn anode.
View Article and Find Full Text PDFAqueous zinc-ion batteries hold attractive potential for large-scale energy storage devices owing to their prominent electrochemical performance and high security. Nevertheless, the applications of aqueous electrolytes have generated various challenges, including uncontrolled dendrite growth and parasitic reactions, thereby deteriorating the Zn anode's stability. Herein, inspired by the superior affinity between Zn and amino acid chains in the zinc finger protein, a cost-effective and green glycine additive is incorporated into aqueous electrolytes to stabilize the Zn anode.
View Article and Find Full Text PDFHerein, inspired by natural sunflower heads' properties increasing the temperature of dish-shaped flowers by tracking the sun, a novel hybrid heterostructure (MoS /Ni S @CA, CA means carbon nanowire arrays) with the sunflower-like structure to boost the kinetics of water splitting is proposed. Density functional theory (DFT) reveals that it can modulate the active electronic states of NiMo atoms around the Fermi-level through the charge transfer between the metallic atoms of Ni S and MoMo bonds of MoS to boost overall water splitting. Most importantly, the finite difference time domain (FDTD) could find that its unique bio-inspired micro-nano light-trapping structure has high solar photothermal conversion efficiency.
View Article and Find Full Text PDF