The phase states and glass transition temperatures () of secondary organic aerosol (SOA) particles are important to resolve for understanding the formation, growth, and fate of SOA as well as their cloud formation properties. Currently, there is a limited understanding of how changes with the composition of organic and inorganic components of atmospheric aerosol. Using broadband dielectric spectroscopy, we measured the of organic mixtures containing isoprene epoxydiol (IEPOX)-derived SOA components, including 2-methyltetrols (2-MT), 2-methyltetrol-sulfate (2-MTS), and 3-methyltetrol-sulfate (3-MTS).
View Article and Find Full Text PDFSea spray aerosol (SSA) is one of the largest global sources of atmospheric aerosol, but little is known about SSA generated in coastal regions with salinity gradients near estuaries and river outflows. SSA particles are chemically complex with substantial particle-to-particle variability due to changes in water temperature, salinity, and biological activity. In previous studies, the ability to resolve the aerosol composition to the level of individual particles has proven necessary for the accurate parameterization of the direct and indirect aerosol effects; therefore, measurements of individual SSA particles are needed for the characterization of this large source of atmospheric aerosol.
View Article and Find Full Text PDF