Publications by authors named "Jerome Deval"

The SARS-CoV-2 outbreak of 2019 had a devastating impact on global health and economies worldwide. The viral cysteine protease (3CLpro) is responsible for viral polypeptide bond cleavages and is therefore an essential target to inhibit viral replication. Here, we report the discovery of an orally available, reversible covalent inhibitor of the SARS-CoV-2 main protease that is also highly active across other human coronaviruses and demonstrated oral efficacy in a Syrian hamster infection model at low plasma concentrations.

View Article and Find Full Text PDF

Chronic hepatitis B (CHB) represents a significant unmet medical need with few options beyond lifelong treatment with nucleoside analogues, which rarely leads to a functional cure. Novel agents that reduce levels of HBV DNA, RNA and other viral antigens could lead to better treatment outcomes. The capsid assembly modulator (CAM) class of compounds represents an important modality for chronic suppression and to improve functional cure rates, either alone or in combination.

View Article and Find Full Text PDF

Agonists of thyroid hormone receptor β (THR-β) decreased LDL cholesterol (LDL-C) and triglyceride (TG) levels in human clinical trials for patients with dyslipidemia. The authors present the highly potent and selective compound ALG-055009 () as a potential best in class THR-β agonist. The high metabolic stability and good permeability translated well in vivo to afford a long in vivo half-life pharmacokinetic profile with limited liability for DDI, and it overcomes certain drawbacks seen in recent clinical candidates.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) can cause pulmonary complications in infants, elderly and immunocompromised patients. While two vaccines and two prophylactic monoclonal antibodies are now available, treatment options are still needed. JNJ-7184 is a non-nucleoside inhibitor of the RSV-Large (L) polymerase, displaying potent inhibition of both RSV-A and -B strains.

View Article and Find Full Text PDF

Stimulator of interferon genes (STING) agonists have shown potent anti-tumor efficacy in various mouse tumor models and have the potential to overcome resistance to immune checkpoint inhibitors (ICI) by linking the innate and acquired immune systems. First-generation STING agonists are administered intratumorally; however, a systemic delivery route would greatly expand the clinical use of STING agonists. Biochemical and cell-based experiments, as well as syngeneic mouse efficacy models, were used to demonstrate the anti-tumoral activity of ALG-031048, a novel STING agonist.

View Article and Find Full Text PDF

Chronic hepatitis B is the most important cause of liver cancer worldwide and affects more than 290 million people. Current treatments are mostly suppressive and rarely lead to a cure. Therefore, there is a need for novel and curative drugs that target the host or the causative agent, hepatitis B virus itself.

View Article and Find Full Text PDF

Background And Aims: Effective therapies leading to a functional cure for chronic hepatitis B are still lacking. Class A capsid assembly modulators (CAM-As) are an attractive modality to address this unmet medical need. CAM-As induce aggregation of the HBV core protein (HBc) and lead to sustained HBsAg reductions in a chronic hepatitis B mouse model.

View Article and Find Full Text PDF

The SARS-CoV-2 main protease (3CLpro) has an indispensable role in the viral life cycle and is a therapeutic target for the treatment of COVID-19. The potential of 3CLpro-inhibitors to select for drug-resistant variants needs to be established. Therefore, SARS-CoV-2 was passaged in the presence of increasing concentrations of ALG-097161, a probe compound designed in the context of a 3CLpro drug discovery program.

View Article and Find Full Text PDF

The 35th International Conference on Antiviral Research (ICAR), sponsored by the International Society for Antiviral Research (ISAR), was held in Seattle, Washington, USA, on March 21-25, 2022 and concurrently through an interactive remote meeting platform. This report gives an overview of the conference on behalf of the society. It provides a general review of the meeting and awardees, summarizing the presentations and their main conclusions from the perspective of researchers active in many different areas of antiviral research and development.

View Article and Find Full Text PDF

As a result of the multiple gathering and travels restrictions during the SARS-CoV-2 pandemic, the annual meeting of the International Society for Antiviral Research (ISAR), the International Conference on Antiviral Research (ICAR), could not be held in person in 2021. Nonetheless, ISAR successfully organized a remote conference, retaining the most critical aspects of all ICARs, a collegiate gathering of researchers in academia, industry, government and non-governmental institutions working to develop, identify, and evaluate effective antiviral therapy for the benefit of all human beings. This article highlights the 2021 remote meeting, which presented the advances and objectives of antiviral and vaccine discovery, research, and development.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. While the development of vaccines and the emergence of antiviral therapeutics is promising, alternative strategies to combat COVID-19 (and potential future pandemics) remain an unmet need. Coronaviruses feature a unique mechanism that may present opportunities for therapeutic intervention: the RNA polymerase complex of coronaviruses is distinct in its ability to proofread and remove mismatched nucleotides during genome replication and transcription.

View Article and Find Full Text PDF

It is generally thought that the promoters of non-segmented, negative strand RNA viruses (nsNSVs) direct the polymerase to initiate RNA synthesis exclusively opposite the 3´ terminal nucleotide of the genome RNA by a de novo (primer independent) initiation mechanism. However, recent studies have revealed that there is diversity between different nsNSVs with pneumovirus promoters directing the polymerase to initiate at positions 1 and 3 of the genome, and ebolavirus polymerases being able to initiate at position 2 on the template. Studies with other RNA viruses have shown that polymerases that engage in de novo initiation opposite position 1 typically have structural features to stabilize the initiation complex and ensure efficient and accurate initiation.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic. The coronavirus 3-chymotrypsin-like protease (3CLpro) controls virus replication and is therefore considered a major target and promising opportunity for rational-based antiviral discovery with direct acting agents. Here we review first-generation SARS-CoV-2 3CLpro inhibitors PF-07304814, GC-376, and CDI-45205 that are being delivered either by injection or inhalation due to their low intrinsic oral bioavailability.

View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus responsible for the global COVID-19 pandemic. Nonstructural protein 14 (NSP14), which features exonuclease (ExoN) and guanine N7 methyltransferase activity, is a critical player in SARS-CoV-2 replication and fidelity and represents an attractive antiviral target. Initiating drug discovery efforts for nucleases such as NSP14 remains a challenge due to a lack of suitable high-throughput assay methodologies.

View Article and Find Full Text PDF

There is an urgent need for antivirals targeting the SARS-CoV-2 virus to fight the current COVID-19 pandemic. The SARS-CoV-2 main protease (3CLpro) represents a promising target for antiviral therapy. The lack of selectivity for some of the reported 3CLpro inhibitors, specifically versus cathepsin L, raises potential safety and efficacy concerns.

View Article and Find Full Text PDF

The 3-chymotrypsin-like cysteine protease (3CLpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is considered a major target for the discovery of direct antiviral agents. We previously reported the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay (Gurard-Levin et al., 2020).

View Article and Find Full Text PDF
Article Synopsis
  • Thyroid hormones influence metabolism in mammals, affecting cholesterol and fatty acid levels through activation of the nuclear thyroid hormone receptor (THR), with THRβ agonists showing promise for treating non-alcoholic steatohepatitis (NASH).
  • The study evaluated three THRβ-agonists (GC-1, MGL-3196, and VK2809) for their selectivity and effectiveness in altering gene expression related to cholesterol and fatty acid metabolism in human liver cells and rat models.
  • Results indicated that GC-1 showed comparable potency to natural thyroid hormone T3, while other compounds were significantly less effective, although VK2809's active form exhibited increased potency in certain conditions, highlighting their potential in managing metabolic
View Article and Find Full Text PDF

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the COVID-19 pandemic that began in 2019. The coronavirus 3-chymotrypsin-like cysteine protease (3CLpro) controls replication and is therefore considered a major target for antiviral discovery. This study describes the evaluation of SARS-CoV-2 3CLpro inhibitors in a novel self-assembled monolayer desorption ionization mass spectrometry (SAMDI-MS) enzymatic assay.

View Article and Find Full Text PDF

Chronic hepatitis C (CHC) is a major liver disease caused by the hepatitis C virus. The current standard of care for CHC can achieve cure rates above 95%; however, the drugs in current use are administered for a period of 8-16 weeks. A combination of safe and effective drugs with a shorter treatment period is highly desirable.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers synthesized and evaluated new 4'-fluoro-2'-C-substituted uridines for their potential against hepatitis C virus (HCV).
  • The triphosphates of these analogues effectively inhibited the viral NS5B polymerase with low inhibition concentrations (IC values) as low as 27 nM.
  • One compound, AL-335, showed strong activity and favorable pharmacokinetics, leading to its selection for clinical trials, where it achieved promising results in phases 1 and 2.
View Article and Find Full Text PDF

2017 marked the 30th anniversary of the approval of zidovudine (AZT) as the first HIV/AIDS therapy. Since then, more than eighty antiviral drugs have received FDA approval, half of which treat HIV infection. Here, we provide a retrospective analysis of approved antiviral drugs, including therapeutics against other major chronic infections such as hepatitis B and C, and herpes viruses, over the last thirty years.

View Article and Find Full Text PDF

Ebolaviruses, marburgviruses, and henipaviruses are zoonotic pathogens belonging to the Filoviridae and Paramyxoviridae families. They exemplify viruses that continue to spill over into the human population, causing outbreaks characterized by high mortality and significant clinical sequelae in survivors of infection. There are currently no approved small molecule therapeutics for use in humans against these viruses.

View Article and Find Full Text PDF

Influenza virus, respiratory syncytial virus, human metapneumovirus, parainfluenza virus, coronaviruses, and rhinoviruses are among the most common viruses causing mild seasonal colds. These RNA viruses can also cause lower respiratory tract infections leading to bronchiolitis and pneumonia. Young children, the elderly, and patients with compromised cardiac, pulmonary, or immune systems are at greatest risk for serious disease associated with these RNA virus respiratory infections.

View Article and Find Full Text PDF

Paramyxoviruses represent a family of RNA viruses causing significant human diseases. These include measles virus, the most infectious virus ever reported, in addition to parainfluenza virus, and other emerging viruses. Paramyxoviruses likely share common replication machinery but their mechanisms of RNA biosynthesis activities and details of their complex polymerase structures are unknown.

View Article and Find Full Text PDF