Publications by authors named "Jennifer A H Koop"

Studies of symbiosis employ the term "parasitism" to connote different sorts of relationships. Within the context of mutualistic symbioses, parasites are otherwise cooperative individuals or strains that appropriate a disproportionate amount of the synergistic products. In the context of antagonistic symbioses, there is no pretence of cooperation, and instead parasites are defined as individuals or strains that derive fitness benefits at a fitness cost to their hosts.

View Article and Find Full Text PDF

Invasive species pose significant threats to island ecosystems, often leading to the decline of native species and the disruption of ecological balance. The avian vampire fly (Philornis downsi), introduced to the Galápagos Islands of Ecuador, has emerged as a major threat to the endemic avifauna, parasitizing multiple species of Darwin's finches and other passerines. Yet, the genetic mechanisms of its invasion remain unclear.

View Article and Find Full Text PDF

Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands.

View Article and Find Full Text PDF

Divergent natural selection should lead to adaptive radiation-that is, the rapid evolution of phenotypic and ecological diversity originating from a single clade. The drivers of adaptive radiation have often been conceptualized through the concept of "adaptive landscapes," yet formal empirical estimates of adaptive landscapes for natural adaptive radiations have proven elusive. Here, we use a 17-year dataset of Darwin's ground finches (Geospiza spp.

View Article and Find Full Text PDF

The term is used in viticulture to emphasize how the biotic and abiotic characteristics of a local site influence grape physiology and thus the properties of wine. In ecology and evolution, such terroir (i.e.

View Article and Find Full Text PDF

The invasive avian vampire fly (Philornis downsi, Diptera: Muscidae) is considered one of the greatest threats to the endemic avifauna of the Galápagos Islands. The fly larvae parasitize nearly every passerine species, including Darwin's finches. Most P.

View Article and Find Full Text PDF

Preference divergence is thought to contribute to reproductive isolation. Ecology can alter the way selection acts on female preferences, making them most likely to diverge when ecological conditions vary among populations. We present a novel mechanism for ecologically dependent sexual selection, termed 'the ecological stage' to highlight its ecological dependence.

View Article and Find Full Text PDF

Disruptive natural selection within populations exploiting different resources is considered to be a major driver of adaptive radiation and the production of biodiversity. Fitness functions, which describe the relationships between trait variation and fitness, can help to illuminate how this disruptive selection leads to population differentiation. However, a single fitness function represents only a particular selection regime over a single specified time period (often a single season or a year), and therefore might not capture longer-term dynamics.

View Article and Find Full Text PDF

In the Upper Mississippi River Region, invasive faucet snails (Bithynia tentaculata) and their trematode parasites have been implicated in more than 182 000 waterfowl deaths since 1996. Estimating transmission potential depends on accurate assessments of susceptible host population size. However, little is known about the mechanisms underlying snail-host susceptibility in this system.

View Article and Find Full Text PDF

Background: The molecular basis of evolutionary change is assumed to be genetic variation. However, growing evidence suggests that epigenetic mechanisms, such as DNA methylation, may also be involved in rapid adaptation to new environments. An important first step in evaluating this hypothesis is to test for the presence of epigenetic variation between natural populations living under different environmental conditions.

View Article and Find Full Text PDF

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species.

View Article and Find Full Text PDF

Parasites are among the most diverse groups of life on Earth, yet complex natural histories often preclude studies of their speciation processes. The biology of parasitic plants facilitates in situ collection of data on both genetic structure and the mechanisms responsible for that structure. Here, we studied the role of mating, dispersal and establishment in host race formation of a parasitic plant.

View Article and Find Full Text PDF

Introduced parasites threaten native host species that lack effective defenses. Such parasites increase the risk of extinction, particularly in small host populations like those on islands. If some host species are tolerant to introduced parasites, this could amplify the risk of the parasite to vulnerable host species.

View Article and Find Full Text PDF

Introduced pathogens and other parasites are often implicated in host population level declines and extinctions. However, such claims are rarely supported by rigorous real-time data. Indeed, the threat of introduced parasites often goes unnoticed until after host populations have declined severely.

View Article and Find Full Text PDF

Understanding the mechanisms driving the extraordinary diversification of parasites is a major challenge in evolutionary biology. Co-speciation, one proposed mechanism that could contribute to this diversity is hypothesized to result from allopatric co-divergence of host-parasite populations. We found that island populations of the Galápagos hawk (Buteo galapagoensis) and a parasitic feather louse species (Degeeriella regalis) exhibit patterns of co-divergence across variable temporal and spatial scales.

View Article and Find Full Text PDF

The prevailing theory for the molecular basis of evolution involves genetic mutations that ultimately generate the heritable phenotypic variation on which natural selection acts. However, epigenetic transgenerational inheritance of phenotypic variation may also play an important role in evolutionary change. A growing number of studies have demonstrated the presence of epigenetic inheritance in a variety of different organisms that can persist for hundreds of generations.

View Article and Find Full Text PDF

Ecological immunology aims to explain variation among hosts in the strength and efficacy of immunological defenses. However, a shortcoming has been the failure to link host immune responses to actual parasites under natural conditions. Here, we present one of the first experimental demonstrations of a parasite-induced immune response in a wild bird population.

View Article and Find Full Text PDF

Two methods commonly used to quantify ectoparasites on live birds are visual examination and dust-ruffling. Visual examination provides an estimate of ectoparasite abundance based on an observer's timed inspection of various body regions on a bird. Dust-ruffling involves application of insecticidal powder to feathers that are then ruffled to dislodge ectoparasites onto a collection surface where they can then be counted.

View Article and Find Full Text PDF

Parasites can negatively affect the evolutionary fitness of their hosts by eliciting physiological stress responses. Parasite-induced stress can be monitored by measuring changes in the adrenal steroid hormone corticosterone. We examined the effect of an invasive parasite on the corticosterone concentrations of a common species of Darwin's finch, the medium ground finch (Geospiza fortis).

View Article and Find Full Text PDF

Feather mites are a diverse group of ectosymbionts that occur on most species of birds. Although Darwin's finches are a well-studied group of birds, relatively little is known about their feather mites. Nearly 200 birds across 9 finch species, and from 2 locations on Santa Cruz Island, Galápagos, were dust-ruffled during the 2009 breeding season.

View Article and Find Full Text PDF

Preening is a bird's first line of defense against harmful ectoparasites. Ectoparasites, in turn, have evolved adaptations for avoiding preening such as hardened exoskeletons and escape behavior. Earlier work suggests that some groups of ectoparasites, such as feather lice, leave hiding places in feathers that are exposed to direct sunlight, making them more vulnerable to preening.

View Article and Find Full Text PDF

Background: Introduced parasites are a particular threat to small populations of hosts living on islands because extinction can occur before hosts have a chance to evolve effective defenses. An experimental approach in which parasite abundance is manipulated in the field can be the most informative means of assessing a parasite's impact on the host. The parasitic fly Philornis downsi, recently introduced to the Galápagos Islands, feeds on nestling Darwin's finches and other land birds.

View Article and Find Full Text PDF

Dynamic changes in integumentary color occur in cases as diverse as the neurologically controlled iridiphores of cephalopod skin and the humidity-responsive cuticles of longhorn beetles. By contrast, feather colors are generally assumed to be relatively static, changing by small amounts only over periods of months. However, this assumption has rarely been tested even though structural colors of feathers are produced by ordered nanostructures that are analogous to those in the aforementioned dynamic systems.

View Article and Find Full Text PDF

Background: Invasive parasites are a major threat to island populations of animals. Darwin's finches of the Galápagos Islands are under attack by introduced pox virus (Poxvirus avium) and nest flies (Philornis downsi). We developed assays for parasite-specific antibody responses in Darwin's finches (Geospiza fortis), to test for relationships between adaptive immune responses to novel parasites and spatial-temporal variation in the occurrence of parasite pressure among G.

View Article and Find Full Text PDF