Publications by authors named "Jeffrey G Ojemann"

Background: Indomethacin-responsive headaches occur in youth and include primary headache syndromes such as hemicrania continua and paroxysmal hemicrania. Both are trigeminal autonomic cephalalgias (TACs). In pediatrics TACs are rare.

View Article and Find Full Text PDF

Background: Relapsed/refractory pediatric CNS tumors have a poor prognosis. EGFR is commonly overexpressed, but EGFRvIII mutations are uncommon. To target these tumors, we used chimeric antigen receptor (CAR) T cells with a binder based on mAb806 which recognizes ectopically expressed wild-type EGFR and EGFRvIII.

View Article and Find Full Text PDF

Diffuse intrinsic pontine glioma (DIPG) is a fatal central nervous system (CNS) tumor that confers a median survival of 11 months. As B7-H3 is expressed on pediatric CNS tumors, we conducted BrainChild-03, a single-center, dose-escalation phase 1 clinical trial of repetitive intracerebroventricular (ICV) dosing of B7-H3-targeting chimeric antigen receptor T cells (B7-H3 CAR T cells) for children with recurrent or refractory CNS tumors and DIPG. Here we report results from Arm C, restricted to patients with DIPG.

View Article and Find Full Text PDF

Objective: Functional MRI (fMRI) helps with the identification of eloquent cortex to assist with function preservation in patients who undergo epilepsy surgery. Language and memory tasks can even be used effectively in clinically involved pediatric patients. Most pediatric studies report on English speaking-only cohorts from English-dominant countries, yet languages other than English (LOEs) are increasingly prevalent in countries such as the US.

View Article and Find Full Text PDF

Electrocorticographic (ECoG) signals provide high-fidelity representations of sensorimotor cortex activation during contralateral hand movements. Understanding the relationship between independent and coordinated finger movements along with their corresponding ECoG signals is crucial for precise brain mapping and neural prosthetic development. We analyzed subdural ECoG signals from three adult epilepsy patients with subdural electrode arrays implanted for seizure foci identification.

View Article and Find Full Text PDF

With the development and characterization of biomarkers that may reflect neural network state as well as a patient's clinical deficits, there is growing interest in more complex stimulation designs. While current implantable neuromodulation systems offer pathways to expand the design and application of adaptive stimulation paradigms, technological drawbacks of these systems limit adaptive neuromodulation exploration. In this paper, we discuss the implementation of a phase-triggered stimulation paradigm using a research platform composed of an investigational system known as the CorTec Brain Interchange (CorTec GmbH, Freiburg, Germany), and an open-source software tool known as OMNI-BIC.

View Article and Find Full Text PDF

Background: Electroencephalography (EEG) and electrocorticography (ECoG) recordings have been used to decode finger movements by analyzing brain activity. Traditional methods focused on single bandpass power changes for movement decoding, utilizing machine learning models requiring manual feature extraction.

New Method: This study introduces a 3D convolutional neural network (3D-CNN) model to decode finger movements using ECoG data.

View Article and Find Full Text PDF
Article Synopsis
  • Somatic molecular profiling of pediatric brain tumors enhances diagnosis and treatment by identifying patients with potential germline variants following initial tumor testing.
  • During a study at Seattle Children's Hospital, 88 CNS tumors underwent molecular testing, revealing that 31 patients had variants that suggested the need for germline testing.
  • Out of those identified, only 19 patients (61%) were tested, with 10 confirming germline variants; challenges remain in ensuring all eligible patients receive testing, highlighting the need for better support and genetic counseling in the process.
View Article and Find Full Text PDF

Background: Surgical management of pediatric patients with nonlesional, drug-resistant epilepsy, including patients with Lennox-Gastaut syndrome (LGS), remains a challenge given the lack of resective targets in most patients and shows seizure freedom rates <50% at 5 years. The efficacy of deep brain stimulation (DBS) is less certain in children than in adults. This study examined clinical and seizure outcomes for pediatric patients with LGS undergoing DBS targeting of the centromedian thalamic nuclei (CMTN).

View Article and Find Full Text PDF

Objective: Spina bifida represents one of the most common birth defects, occurring in approximately 1-2 children per 1000 live births worldwide. The functional level of patients with spina bifida is highly variable and believed to be correlated with the anatomical level of the lesion. The variable clinical picture is well established, but the correlation with anatomical level and intraoperative neuromonitoring (IONM) data has not been investigated.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies on human cortex have shown that GABAergic neurons have a complex hierarchical organization with various subclasses and specific types.
  • Researchers used advanced techniques to study these neurons in human brain slices, combining viral labeling and single-cell RNA sequencing.
  • The findings revealed detailed differences within GABAergic neuron types, including variations between human and mouse neurons and highlighted the need for comprehensive analysis to better understand brain cell properties.
View Article and Find Full Text PDF

Neocortical layer 1 (L1) is a site of convergence between pyramidal-neuron dendrites and feedback axons where local inhibitory signaling can profoundly shape cortical processing. Evolutionary expansion of human neocortex is marked by distinctive pyramidal neurons with extensive L1 branching, but whether L1 interneurons are similarly diverse is underexplored. Using Patch-seq recordings from human neurosurgical tissue, we identified four transcriptomic subclasses with mouse L1 homologs, along with distinct subtypes and types unmatched in mouse L1.

View Article and Find Full Text PDF

Single-cell transcriptomic studies have identified a conserved set of neocortical cell types from small postmortem cohorts. We extended these efforts by assessing cell type variation across 75 adult individuals undergoing epilepsy and tumor surgeries. Nearly all nuclei map to one of 125 robust cell types identified in the middle temporal gyrus.

View Article and Find Full Text PDF

Objective: Tethered cord syndrome refers to a constellation of symptoms characterized by neurological, musculoskeletal, and urinary symptoms, caused by traction on the spinal cord, which can be secondary to various etiologies. Surgical management of simple tethered cord etiologies (e.g.

View Article and Find Full Text PDF

Objective: We compare cytokine profiles at the time of initial CSF shunt placement between children who required no subsequent shunt revision surgeries and children requiring repeated CSF shunt revision surgeries for CSF shunt failure. We also describe the cytokine profiles across surgical episodes for children who undergo multiple subsequent revision surgeries.

Methods: This pilot study was nested within an ongoing prospective multicenter study collecting CSF samples and clinical data at the time of CSF shunt surgeries since August 2014.

View Article and Find Full Text PDF

Background: Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive alternative to surgical resection for drug-resistant mesial temporal lobe epilepsy (mTLE). Reported rates of seizure freedom are variable and long-term durability is largely unproven. Anterior temporal lobectomy (ATL) remains an option for patients with MRgLITT treatment failure.

View Article and Find Full Text PDF

Objective: Epilepsy surgery remains one of the most underutilized procedures in epilepsy despite its proven superiority to other available therapies. This underutilization is greater in patients in whom initial surgery fails. This case series examined the clinical characteristics, reasons for initial surgery failure, and outcomes in a cohort of patients who underwent hemispherectomy following unsuccessful smaller resections for intractable epilepsy (subhemispheric group [SHG]) and compared them to those of a cohort of patients who underwent hemispherectomy as the first surgery (hemispheric group [HG]).

View Article and Find Full Text PDF

Rodent studies have demonstrated that synaptic dynamics from excitatory to inhibitory neuron types are often dependent on the target cell type. However, these target cell-specific properties have not been well investigated in human cortex, where there are major technical challenges in reliably obtaining healthy tissue, conducting multiple patch-clamp recordings on inhibitory cell types, and identifying those cell types. Here, we take advantage of newly developed methods for human neurosurgical tissue analysis with multiple patch-clamp recordings, fluorescent in situ hybridization (FISH), machine learning-based cell type classification and prospective GABAergic AAV-based labeling to investigate synaptic properties between pyramidal neurons and PVALB- vs.

View Article and Find Full Text PDF

Introduction: Subependymal giant cell astrocytoma (SEGA) is the most common CNS tumor in patients with tuberous sclerosis complex (TSC). Although these are benign, their proximity to the foramen of Monroe frequently causes obstructive hydrocephalus, a potentially fatal complication. Open surgical resection has been the mainstay of treatment; however, this can cause significant morbidity.

View Article and Find Full Text PDF

Objectives: The purpose of this report was to study the incidence of sudden unexpected death in epilepsy (SUDEP) after laser interstitial thermal therapy (LITT) for drug-resistant epilepsy (DRE).

Methods: A prospective observational study of consecutive patients treated with LITT between 2013 and 2021 was conducted. The primary outcome was the occurrence of SUDEP during postoperative follow-up.

View Article and Find Full Text PDF

Central nervous system (CNS) tumors are the most common solid malignancy in the pediatric population. Based on adoptive cellular therapy's clinical success against childhood leukemia and the preclinical efficacy against pediatric CNS tumors, chimeric antigen receptor (CAR) T cells offer hope of improving outcomes for recurrent tumors and universally fatal diseases such as diffuse intrinsic pontine glioma (DIPG). However, a major obstacle for tumors of the brain and spine is ineffective T cell chemotaxis to disease sites.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on a novel treatment for diffuse intrinsic pontine glioma (DIPG), a deadly brainstem tumor, using B7-H3-targeted chimeric antigen receptor (CAR) T cells.
  • A phase I trial (BrainChild-03) was conducted with three DIPG patients, where they received 40 infusions of B7-H3 CAR T cells, showing no severe toxic effects.
  • Results indicated one patient experienced significant improvement, and there was evidence of local immune activation and persistent CAR T cells in the patients' cerebrospinal fluid (CSF), suggesting this treatment approach's potential effectiveness.
View Article and Find Full Text PDF

Virtual reality (VR) offers a robust platform for human behavioral neuroscience, granting unprecedented experimental control over every aspect of an immersive and interactive visual environment. VR experiments have already integrated non-invasive neural recording modalities such as EEG and functional MRI to explore the neural correlates of human behavior and cognition. Integration with implanted electrodes would enable significant increase in spatial and temporal resolution of recorded neural signals and the option of direct brain stimulation for neurofeedback.

View Article and Find Full Text PDF

Objective: Assessing memory is often critical in surgical evaluation, although difficult to assess in young children and in patients with variable task abilities. While obtaining interpretable data from task-based functional MRI (fMRI) measures is common in compliant and awake patients, it is not known whether functional connectivity MRI (fcMRI) data show equivalent results. If this were the case, it would have substantial clinical and research generalizability.

View Article and Find Full Text PDF

Objective: The goal of epilepsy surgery is both seizure cessation and maximal preservation of function. In temporal lobe (TL) cases, the lack of functional MRI (fMRI) tasks that effectively activate mesial temporal structures hampers preoperative memory risk assessment, especially in children. This study evaluated pediatric TL surgery outcome optimization associated with tailored resection informed by an fMRI memory task.

View Article and Find Full Text PDF