With the continued spread of highly pathogenic avian influenza (HPAI), understanding the complex dynamics of virus transfer at the wild - agriculture interface is paramount. Spillover events (i.e.
View Article and Find Full Text PDFWhile wild waterfowl are known reservoirs of avian influenza viruses and facilitate the movement of these viruses, there are notable differences in the response to infection across species. This study explored differential responses to infection with highly pathogenic avian influenza in Snow Geese (Anser caerulescens) located in the California Central Valley. Though H5 antibody prevalence was high across years among birds sampled in the winter (75% in both years via hemagglutination inhibition), these values were even higher among birds sampled in summer that failed to migrate (i.
View Article and Find Full Text PDFWhile the recent incursion of highly pathogenic avian influenza into North America has resulted in notable losses to the commercial poultry industry, the mechanism by which virus enters commercial poultry houses is still not understood. One theorized mechanism is that waterfowl shed virus into the environment surrounding poultry farms, such as into retention ponds, and is then transmitted into poultry houses via bridge species. Little is known about if and when wild waterfowl use these retention ponds, leading to uncertainty regarding the potential significance of this interface.
View Article and Find Full Text PDFWild waterfowl are considered to be the reservoir of avian influenza, but their distinct annual life cycle stages and their contribution to disease dynamics are not well understood. Studies of the highly pathogenic avian influenza (HPAI) virus have primarily focused on wintering grounds, where human and poultry densities are high year-round, compared with breeding grounds, where migratory waterfowl are more isolated. Few if any studies of avian influenza have focused on the molting stage where wild waterfowl congregate in a few selected wetlands and undergo the simultaneous molt of wing and tail feathers during a vulnerable flightless period.
View Article and Find Full Text PDFDouble-crested Cormorants (Nannopterum auritum) have historically exhibited low levels of infection and antibodies to avian influenza virus (AIV). The recent global expansion of clade 2.3.
View Article and Find Full Text PDFTesting of ducks in Tennessee, United States, before introduction of highly pathogenic influenza A(H5N1) virus demonstrated a high prevalence of antibodies to influenza A virus but very low prevalence of antibodies to H5 (25%) or H5 and N1 (13%) subtypes. Antibody prevalence increased after H5N1 introduction.
View Article and Find Full Text PDFThe lack of consolidated information regarding the response of wild bird species to infection with avian influenza virus (AIV) is a challenge to both conservation managers and researchers alike, with related sectors also impacted, such as public health and commercial poultry. Using two independent searches, we reviewed published literature for studies describing wild bird species experimentally infected with avian influenza to assess host species' relative susceptibility to AIVs. Additionally, we summarize broad-scale parameters for elements such as shedding duration and minimum infectious dose that can be used in transmission modelling efforts.
View Article and Find Full Text PDFScaup, including both Lesser and Greater (Aythya affinis and Aythya marila, respectively), are a grouping of populous and widespread North American diving ducks. Few influenza type A viruses (IAV) have been reported from these species despite a high prevalence of antibodies to IAV being reported. Existing virologic and serologic data indicate that IAV infection routinely occurs in scaup, yet it is unknown which IAV subtypes are linked to these infections.
View Article and Find Full Text PDFThe wild to domestic bird interface is an important nexus for emergence and transmission of highly pathogenic avian influenza (HPAI) viruses. Although the recent incursion of HPAI H5N1 Clade 2.3.
View Article and Find Full Text PDFInfluenza A viruses in wild birds pose threats to the poultry industry, wild birds, and human health under certain conditions. Of particular importance are wild waterfowl, which are the primary reservoir of low-pathogenicity influenza viruses that ultimately cause high-pathogenicity outbreaks in poultry farms. Despite much work on the drivers of influenza A virus prevalence, the underlying viral subtype dynamics are still mostly unexplored.
View Article and Find Full Text PDFEnvironmental contamination is widespread and can negatively impact wildlife health. Some contaminants, including heavy metals, have immunosuppressive effects, but prior studies have rarely measured contamination and disease simultaneously, which limits our understanding of how contaminants and pathogens interact to influence wildlife health. Here, we measured mercury concentrations, influenza infection, influenza antibodies and body condition in 749 individuals from 11 species of wild ducks overwintering in California.
View Article and Find Full Text PDFAvian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized.
View Article and Find Full Text PDFDespite the recognized role of wild waterfowl in the potential dispersal and transmission of highly pathogenic avian influenza (HPAI) virus, little is known about how infection affects these birds. This lack of information limits our ability to estimate viral spread in the event of an HPAI outbreak, thereby limiting our abilities to estimate and communicate risk. Here, we present telemetry data from a wild Lesser Scaup (Aythya affinis), captured during a separate ecology study in the Chesapeake Bay, Maryland.
View Article and Find Full Text PDFWild waterbirds, the natural reservoirs for avian influenza viruses, undergo migratory movements each year, connecting breeding and wintering grounds within broad corridors known as flyways. In a continental or global view, the study of virus movements within and across flyways is important to understanding virus diversity, evolution, and movement. From 2015 to 2017, we sampled waterfowl from breeding (Maine) and wintering (Maryland) areas within the Atlantic Flyway (AF) along the east coast of North America to investigate the spatio-temporal trends in persistence and spread of influenza A viruses (IAV).
View Article and Find Full Text PDFUnderstanding transmission dynamics that link wild and domestic animals is a key element of predicting the emergence of infectious disease, an event that has highest likelihood of occurring wherever human livelihoods depend on agriculture and animal trade. Contact between poultry and wild birds is a key driver of the emergence of highly pathogenic avian influenza (HPAI), a process that allows for host switching and accelerated reassortment, diversification, and spread of virus between otherwise unconnected regions. This study addresses questions relevant to the spillover of HPAI at a transmission hotspot: what is the nature of the wild bird-poultry interface in Egypt and adjacent Black Sea-Mediterranean countries and how has this contributed to outbreaks occurring worldwide? Using a spatiotemporal model of infection risk informed by satellite tracking of waterfowl and viral phylogenetics, this study identified ecological conditions that contribute to spillover in this understudied region.
View Article and Find Full Text PDFThe Bar-headed Goose is the only true goose species or Anserinae to migrate solely within the Central Asian Flyway, and thus, it is an ideal species for observing the effects of both land use and climate change throughout the flyway. In this paper, we investigate the home range, movement pattern, and habitat selection of Bar-headed Geese () during the breeding season at Qinghai Lake, which is one of their largest breeding areas and a major migration staging area in the flyway. We identified several areas used by the geese during the breeding season along the shoreline of Qinghai Lake and found that most geese had more than one core use area and daily movements that provided insight into their breeding activity.
View Article and Find Full Text PDFMany waterbird populations have faced declines over the last century, including the common tern (Sterna hirundo), a waterbird species with a widespread breeding distribution, that has been recently listed as endangered in some habitats of its range. Waterbird monitoring programs exist to track populations through time; however, some of the more intensive approaches require entering colonies and can be disruptive to nesting populations. This paper describes a protocol that utilizes a minimally invasive surveillance system to continuously monitor common tern nesting behavior in typical ground-nesting colonies.
View Article and Find Full Text PDFFemale white-tailed deer () are thought to choose between two behavioral strategies to maximize the quality of potential mates: sit and wait, characterized by concentrating activity within a restricted area, and excursive behavior, characterized by increased activity and excursions outside the home range. As movement patterns may influence conception, our goal was to examine the patterns of female white-tailed deer movements to evaluate which breeding strategy was employed. We equipped 36 female white-tailed deer with GPS collars from August 2013 to December 2015.
View Article and Find Full Text PDFAn animal's ability to perceive and learn about its environment plays a key role in many behavioral processes, including navigation, migration, dispersal and foraging. However, the understanding of the role of cognition in the development of navigation strategies and the mechanisms underlying these strategies is limited by the methodological difficulties involved in monitoring, manipulating the cognition of, and tracking wild animals. This study describes a protocol for addressing the role of cognition in navigation that combines pharmacological manipulation of behavior with high-precision radio telemetry.
View Article and Find Full Text PDF