Membrane proteins remain challenging targets for structural biology, despite much effort, as their native environment is heterogeneous and complex. Most methods rely on detergents to extract membrane proteins from their native environment, but this removal can significantly alter the structure and function of these proteins. Here, we overcome these challenges with a hybrid method to study membrane proteins in their native membranes, combining high-resolution solid-state nuclear magnetic resonance spectroscopy and electron cryotomography using the same sample.
View Article and Find Full Text PDFUnlabelled: Membrane proteins need to be properly inserted and folded in the membrane in order to perform a range of activities that are essential for the survival of bacteria. The Sec translocon and the YidC insertase are responsible for the insertion of the majority of proteins into the cytoplasmic membrane. YidC can act in combination with the Sec translocon in the insertion and folding of membrane proteins.
View Article and Find Full Text PDFProteins of the YidC/OxaI/Alb3 family play a crucial role in the insertion, folding, and/or assembly of membrane proteins in prokaryotes and eukaryotes. Bacillus subtilis has two YidC-like proteins, denoted SpoIIIJ and YqjG. SpoIIIJ and YqjG are largely exchangeable in function, but SpoIIIJ has a unique role in sporulation, while YqjG stimulates competence development.
View Article and Find Full Text PDFThe interaction between membrane proteins and their (protein) ligands is conventionally investigated by nonequilibrium methods such as co-sedimentation or pull-down assays. Surface Plasmon Resonance can be used to monitor such binding events in real-time using isolated membranes immobilized to a surface providing insights in the kinetics of binding under equilibrium conditions. This application provides a fast, automated way to detect interacting species and to determine the kinetics and affinity (Kd) of the interaction.
View Article and Find Full Text PDFSecYEG functions as a membrane channel for protein export. SecY constitutes the protein-conducting pore, which is enwrapped by SecE in a V-shaped manner. In its minimal form SecE consists of a single transmembrane segment that is connected to a surface-exposed amphipathic α-helix via a flexible hinge.
View Article and Find Full Text PDFThe YidC/OxaI/Alb3 family of membrane proteins is involved in the biogenesis of integral membrane proteins in bacteria, mitochondria, and chloroplasts. Gram-positive bacteria often contain multiple YidC paralogs that can be subdivided into two major classes, namely, YidC1 and YidC2. The Streptococcus mutans YidC1 and YidC2 proteins possess C-terminal tails that differ in charges (+9 and + 14) and lengths (33 and 61 amino acids).
View Article and Find Full Text PDFMembrane protein biogenesis in bacteria occurs via dedicated molecular systems SecYEG and YidC that function independently and in cooperation. YidC belongs to the universally conserved Oxa1/Alb3/YidC family of membrane insertases and is believed to associate with translating ribosomes at the membrane surface. Here, we have examined the architecture of the YidC:ribosome complex formed upon YidC-mediated membrane protein insertion.
View Article and Find Full Text PDFThe members of the YidC/Oxa1/Alb3 protein family are evolutionary conserved in all three domains of life. They facilitate the insertion of membrane proteins into bacterial, mitochondrial, and thylakoid membranes and have been implicated in membrane protein folding and complex formation. The major classes of substrates are small hydrophobic subunits of large energy-transducing complexes involved in respiration and light capturing.
View Article and Find Full Text PDFMembrane protein assembly is a fundamental process in all cells. The membrane-bound Rieske iron-sulfur protein is an essential component of the cytochrome bc(1) and cytochrome b(6)f complexes, and it is exported across the energy-coupling membranes of bacteria and plants in a folded conformation by the twin arginine protein transport pathway (Tat) transport pathway. Although the Rieske protein in most organisms is a monotopic membrane protein, in actinobacteria, it is a polytopic protein with three transmembrane domains.
View Article and Find Full Text PDFDuring co-translational membrane insertion of membrane proteins with large periplasmic domains, the bacterial SecYEG complex needs to interact both with the ribosome and the SecA ATPase. Although the binding sites for SecA and the ribosome overlap, it has been suggested that these ligands can interact simultaneously with SecYEG. We used surface plasmon resonance and fluorescence correlation spectroscopy to examine the interaction of SecA and ribosomes with the SecYEG complex present in membrane vesicles and the purified SecYEG complex present in a detergent-solubilized state or reconstituted into nanodiscs.
View Article and Find Full Text PDFKar2p, an essential Hsp70 chaperone in the endoplasmic reticulum of Saccharomyces cerevisiae, facilitates the transport and folding of nascent polypeptides within the endoplasmic reticulum lumen. The chaperone activity of Kar2p is regulated by its intrinsic ATPase activity that can be stimulated by two different nucleotide exchange factors, namely Sil1p and Lhs1p. Here, we demonstrate that the binding requirements for Lhs1p are complex, requiring both the nucleotide binding domain plus the linker domain of Kar2p.
View Article and Find Full Text PDFProtein translocation and folding in the endoplasmic reticulum of Saccharomyces cerevisiae involves two distinct Hsp70 chaperones, Lhs1p and Kar2p. Both proteins have the characteristic domain structure of the Hsp70 family consisting of a conserved N-terminal nucleotide binding domain and a C-terminal substrate binding domain. Kar2p is a canonical Hsp70 whose substrate binding activity is regulated by cochaperones that promote either ATP hydrolysis or nucleotide exchange.
View Article and Find Full Text PDFExport of secretory proteins across and insertion of membrane proteins into the cytoplasmic membrane of Escherichia coli and other bacteria is mediated by the enzyme complex translocase. The last decade has seen a major advance in the understanding of the mechanism of these processes. A large part of this progress can be attributed to the development of general and powerful methods to study the translocase activity in vitro.
View Article and Find Full Text PDFThe Escherichia coli SecYEG complex forms a transmembrane channel for both protein export and membrane protein insertion. Secretory proteins and large periplasmic domains of membrane proteins require for translocation in addition the SecA ATPase. The conserved arginine 357 of SecY is essential for a yet unidentified step in the SecA catalytic cycle.
View Article and Find Full Text PDFThe motor protein SecA drives the translocation of (pre-)proteins across the SecYEG channel in the bacterial cytoplasmic membrane by nucleotide-dependent cycles of conformational changes often referred to as membrane insertion/de-insertion. Despite structural data on SecA and an archaeal homolog of SecYEG, the identity of the sites of interaction between SecA and SecYEG are unknown. Here, we show that SecA can be cross-linked to several residues in cytoplasmic loop 5 (C5) of SecY, and that SecA directly interacts with a part of transmembrane segment 4 (TMS4) of SecY that is buried in the membrane region of SecYEG.
View Article and Find Full Text PDFYidC is a member of the OxaI family of membrane proteins that has been implicated in the membrane insertion of inner membrane proteins in Escherichia coli. We have recently demonstrated that proteoliposomes containing only YidC support both the stable membrane insertion and the oligomerization of the c subunit of the F(1)F(0) ATP synthase (F(0)c). Here we have shown that two mutants of F(0)c unable to form a functional F(1)F(0) ATPase interact with YidC, require YidC for membrane insertion, but fail to oligomerize.
View Article and Find Full Text PDFThe ATPase SecA provides the driving force for the transport of secretory proteins across the cytoplasmic membrane of Escherichia coli. SecA exists as a dimer in solution, but the exact oligomeric state of SecA during membrane binding and preprotein translocation is a topic of debate. To study the requirements of oligomeric changes in SecA during protein translocation, a non-dissociable SecA dimer was formed by oxidation of the carboxyl-terminal cysteines.
View Article and Find Full Text PDFSecYEG translocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds the membrane-embedded SecYEG protein-conducting channel with high affinity and then drives the stepwise translocation of preproteins across the membrane through multiple cycles of ATP binding and hydrolysis. We have investigated the kinetics of nucleotide binding to SecA while associated with the SecYEG complex.
View Article and Find Full Text PDFTranslocase mediates the transport of preproteins across the inner membrane of Escherichia coli. SecA binds with high affinity to the membrane-embedded protein-conducting SecYEG complex and serves as both a receptor for secretory proteins and as an ATP-driven molecular motor. Cycles of ATP binding and hydrolysis by SecA drive the progressive movement of the preprotein across the membrane.
View Article and Find Full Text PDFProtein secretion in Escherichia coli is mediated by translocase, a multi-subunit membrane protein complex with SecA as ATP-driven motor protein and the SecYEG complex as translocation pore. A fluorescent assay was developed to facilitate kinetic studies of protein translocation. Single cysteine mutants of proOmpA were site-specific labeled with fluorescent dyes, and the SecA and ATP-dependent translocation into inner membrane vesicles and SecYEG proteoliposomes was monitored by means of protease accessibility and in gel fluorescent imaging.
View Article and Find Full Text PDFSecYEG forms the protein-conducting channel of the Escherichia coli translocase. It binds the peripheral ATPase SecA that drives the preprotein translocation reaction. PrlA4 is a double mutant of SecY that enables the translocation of preproteins with a defective or even missing signal sequence.
View Article and Find Full Text PDF