Publications by authors named "Jean-Leon Chong"

The urea cycle generates arginine that is one of the major precursors for creatine biosynthesis. Here we evaluate levels of creatine and guanidinoacetate (the precursor in the synthesis of creatine) in plasma samples (n = 207) of patients (n = 73) with different types of urea cycle disorders (ornithine transcarbamylase deficiency (n = 22; n = 7), citrullinemia type 1 (n = 60; n = 22), argininosuccinic aciduria (n = 81; n = 31), arginase deficiency (n = 44; n = 13)). The concentration of plasma guanidinoacetate positively correlated ( < 0.

View Article and Find Full Text PDF

Unlabelled: Genetic and epigenetic events that alter gene expression and/or protein function or localization are thought to be the primary mechanism that drives tumorigenesis and governs the clinical behavior of cancers. Yet, a number of studies have shown that the effects of oncogene expression or tumor suppressor ablation are highly dependent on cell type. The molecular basis for this cell-type specificity and how it contributes to tumorigenesis are unknown.

View Article and Find Full Text PDF

The retinoblastoma protein (pRB) is best known for regulating cell proliferation through E2F transcription factors. In this report, we investigate the properties of a targeted mutation that disrupts pRB interactions with the transactivation domain of E2Fs. Mice that carry this mutation endogenously (Rb1(ΔG)) are defective for pRB-dependent repression of E2F target genes.

View Article and Find Full Text PDF

The evolutionarily ancient arm of the E2f family of transcription factors consisting of the two atypical members E2f7 and E2f8 is essential for murine embryonic development. However, the critical tissues, cellular processes, and molecular pathways regulated by these two factors remain unknown. Using a series of fetal and placental lineage-specific cre mice, we show that E2F7/E2F8 functions in extraembryonic trophoblast lineages are both necessary and sufficient to carry fetuses to term.

View Article and Find Full Text PDF

The retinoblastoma tumor suppressor (pRb) regulates cell cycle entry, progression and exit by controlling the activity of the E2F-family of transcription factors. During cell cycle exit pRb acts as a transcriptional repressor by associating with E2F proteins and thereby inhibiting their ability to stimulate the expression of genes required for S phase. Indeed, many tumors harbor mutations in the RB gene and the pRb-E2F pathway is compromised in nearly all types of cancers.

View Article and Find Full Text PDF

E2F transcription factors regulate the progression of the cell cycle by repression or transactivation of genes that encode cyclins, cyclin dependent kinases, checkpoint regulators, and replication proteins. Although some E2F functions are independent of the Retinoblastoma tumor suppressor (Rb) and related family members, p107 and p130, much of E2F-mediated repression of S phase entry is dependent upon Rb. We previously showed in cultured mouse embryonic fibroblasts that concomitant loss of three E2F activators with overlapping functions (E2F1, E2F2, and E2F3) triggered the p53-p21(Cip1) response and caused cell cycle arrest.

View Article and Find Full Text PDF

In the established model of mammalian cell cycle control, the retinoblastoma protein (Rb) functions to restrict cells from entering S phase by binding and sequestering E2f activators (E2f1, E2f2 and E2f3), which are invariably portrayed as the ultimate effectors of a transcriptional program that commit cells to enter and progress through S phase. Using a panel of tissue-specific cre-transgenic mice and conditional E2f alleles we examined the effects of E2f1, E2f2 and E2f3 triple deficiency in murine embryonic stem cells, embryos and small intestines. We show that in normal dividing progenitor cells E2f1-3 function as transcriptional activators, but contrary to the current view, are dispensable for cell division and instead are necessary for cell survival.

View Article and Find Full Text PDF

The tumour stroma is believed to contribute to some of the most malignant characteristics of epithelial tumours. However, signalling between stromal and tumour cells is complex and remains poorly understood. Here we show that the genetic inactivation of Pten in stromal fibroblasts of mouse mammary glands accelerated the initiation, progression and malignant transformation of mammary epithelial tumours.

View Article and Find Full Text PDF

The E2f3 locus encodes two Rb-binding gene products, E2F3a and E2F3b, which are differentially regulated during the cell cycle and are thought to be critical for cell cycle progression. We targeted the individual inactivation of E2f3a or E2f3b in mice and examined their contributions to cell proliferation and development. Chromatin immunoprecipitation and gene expression experiments using mouse embryo fibroblasts deficient in each isoform showed that E2F3a and E2F3b contribute to G(1)/S-specific gene expression and cell proliferation.

View Article and Find Full Text PDF

The E2F family is conserved from Caenorhabditis elegans to mammals, with some family members having transcription activation functions and others having repressor functions. Whereas C. elegans and Drosophila melanogaster have a single E2F activator protein and repressor protein, mammals have at least three activator and five repressor proteins.

View Article and Find Full Text PDF

The simian virus 40 large T antigen contributes to neoplastic transformation, in part, by targeting the Rb family of tumor suppressors. There are three known Rb proteins, pRb, p130, and p107, all of which block the cell cycle by preventing the transcription of genes regulated by the E2F family of transcription factors. T antigen interacts directly with Rb proteins and disrupts Rb-E2F complexes both in vitro and in cultured cells.

View Article and Find Full Text PDF

The inactivation of the retinoblastoma (Rb) tumor suppressor gene in mice results in ectopic proliferation, apoptosis, and impaired differentiation in extraembryonic, neural, and erythroid lineages, culminating in fetal death by embryonic day 15.5 (E15.5).

View Article and Find Full Text PDF

Eukaryotic gene expression requires the coordinated activity of many macromolecular machines including transcription factors and RNA polymerase, the spliceosome, mRNA export factors, the nuclear pore, the ribosome and decay machineries. Yeast carrying mutations in genes encoding components of these machineries were examined using microarrays to measure changes in both pre-mRNA and mRNA levels. We used these measurements as a quantitative phenotype to ask how steps in the gene expression pathway are functionally connected.

View Article and Find Full Text PDF

Viruses are intracellular parasites that must use the host machinery to multiply. Identification of the host factors that perform essential functions in viral replication is thus of crucial importance to the understanding of virus-host interactions. Here we describe Ded1p, a highly conserved DExD/H-box translation factor, as a possible host factor recruited by the yeast L-A double-stranded RNA (dsRNA) virus.

View Article and Find Full Text PDF

The DHH1 gene in the yeast Saccharomyces cerevisiae encodes a putative RNA helicase of remarkable sequence similarity to several other DExD/H-box proteins, including Xp54 in Xenopus laevis and Ste13p in Schizosaccharomyces pombe. We show here that over-expression of Xp54, an integral component of the stored messenger ribonucleoprotein (mRNP) particles, can rescue the loss of Dhh1p in yeast. Localization and sedimentation studies showed that Dhh1p exists predominantly in the cytoplasm and is present in large complexes whose sizes appear to vary according to the growth stage of the cell culture.

View Article and Find Full Text PDF