Publications by authors named "Javier Perez-Ramirez"

Platinum (Pt) nanostructuring is a powerful strategy for tuning adsorption properties and reactivity in vinyl chloride monomer (VCM) synthesis. To ensure relevance beyond ideal conditions, catalyst performance must be evaluated under more realistic acetylene (CH) feeds containing unavoidable impurities such as oxygen (O) and hydrogen (H), which can impair the performance through competitive adsorption and active site modification. Herein, we study the behavior of Pt single atom (SA) under multicomponent feeds containing H and O.

View Article and Find Full Text PDF

Herein, [NEtMe][PdCl] is reported as a highly active catalyst for the mercury-free hydrochlorination of acetylene to vinyl chloride, resulting from the combination of the bichloride-based ionic liquid [NEtMe][Cl(HCl)] with PdCl. Replacing gaseous HCl with the bichloride shifts the reaction in the liquid phase increasing the process safety by pressure reduction and achieves a turnover frequency of TOF = 110 mol h mol matching the productivity of state-of-the-art heterogeneous systems. Additionally, [NEtMe][PdCl] shows remarkable long-term stability and can be re-used over ten reaction cycles (200 h in total) without any problems due to its resistance to reduction by acetylene and coking as revealed by kinetic, theoretical, and spectroscopic investigations.

View Article and Find Full Text PDF

Supported metal catalysts that integrate atomically dispersed species with controlled structures lie at the forefront of catalytic materials design, offering exceptional control over reactivity and high metal utilization, approaching the precision of molecular systems. However, accurately resolving the local metal coordination environments remains challenging, hindering the advancement of structure-activity relationships needed to optimize their design for diverse applications. Although electron microscopy reveals atomic dispersion, conventional spectroscopic methods used in heterogeneous catalysis only provide average structural information.

View Article and Find Full Text PDF

Deactivation of metal-based catalysts for vinyl chloride synthesis via acetylene hydrochlorination is often dictated by indispensable, catalytically-active carbon supports, but underlying mechanisms remain unclear. Carbon nitrides offer an attractive platform for studying them thanks to ordered structure and high N-content, which facilitates coking. Herein, we monitor the life and death of carbon nitride supports for Pt single atoms in acetylene hydrochlorination, demonstrating that specific N-functionalities and their restructuring cause distinct deactivation mechanisms.

View Article and Find Full Text PDF

Designing high-performance catalysts based on supported metal atoms and nanoparticles necessitates rigorous assembly control, which affects reactivity. Yet, attaining synthesis precision to discern catalyst speciation and properties remains challenging. This limitation is tackled by pioneering an eXplainable Artificial Intelligence (XAI) methodology that combines a decision tree classifier and a random forest regressor sequentially to elucidate synthesis-structure-property-function relationships in nanostructured catalysts, exemplified for the oxygen evolution (OER) and hydrogen evolution (HER) reactions.

View Article and Find Full Text PDF

Volcano plots, stemming from the Sabatier principle, visualize descriptor-performance relationships, allowing rational catalyst design. Manually drawn volcanoes originating from experimental studies are potentially prone to human bias as no guidelines or metrics exist to quantify the goodness of fit. To address this limitation, we introduce a framework called SPOCK (systematic piecewise regression for volcanic kinetics) and validate it using experimental data from heterogeneous, homogeneous, and enzymatic catalysis to fit volcano-like relationships.

View Article and Find Full Text PDF

Supported reducible oxides, such as indium oxide on monoclinic zirconia (InO/m-ZrO), are promising catalysts for green methanol synthesis via CO hydrogenation. Growing evidence suggests that dynamic restructuring under reaction conditions plays a crucial but poorly understood role in catalytic performance. To address this, the direct visualization of the state-of-the-art InO/m-ZrO catalyst under CO hydrogenation conditions (T  =  553 K, P  =  1.

View Article and Find Full Text PDF

Selective coupling of C platform molecules to C olefins is a cornerstone for establishing a sustainable chemical industry based on nonpetroleum sources. Vinyl chloride (CHCl), one of the top commodity petrochemicals, is commercially produced from coal- or oil-derived C hydrocarbon (acetylene and ethylene) feedstocks with a high carbon footprint. Here, we report a C-based route for vinyl chloride synthesis via the selective oxidative coupling of methyl chloride.

View Article and Find Full Text PDF

In situ monitoring is essential for catalytic process design, offering real-time insights into active structures and reactive intermediates. Electron paramagnetic resonance (EPR) spectroscopy excels at probing geometric and electronic properties of paramagnetic species during reactions. Yet, state-of-the-art liquid-phase EPR methods, like flat cells, require custom resonators, consume large amounts of reagents, and are unsuited for tracking initial kinetics or use with solid catalysts.

View Article and Find Full Text PDF

Buchwald-Hartwig (BH) aminations are crucial for synthesizing arylamine motifs in numerous bioactive molecules and fine chemicals. While homogeneous palladium complexes can be effective catalysts, their high costs and environmental impact motivate the search for alternative approaches. Heterogeneous palladium single-atom catalysts (SAC) offer promising recoverable alternatives in C-C cross-couplings.

View Article and Find Full Text PDF
Article Synopsis
  • Diatomic catalysts (DACs) leverage the interactions between adjacent metal atoms to enhance the properties of single-atom catalysts (SACs), but their preparation and characterization pose challenges.
  • A new carbon nitride-supported Pd-DAC was developed, achieving a remarkable 92% yield in photocatalytic water-donating transfer hydrogenation of 4-vinylphenol, outperforming both Pd single atoms (47%) and nanoparticles (1%).
  • This study combines advanced imaging and machine learning to confirm the presence of dimeric Pd species and uses DFT simulations to explain the superior performance of Pd-DAC through improved substrate activation, offering a more sustainable alternative to traditional hydrogenation methods.
View Article and Find Full Text PDF

Single-atom heterogeneous catalysts (SACs) are potential, recoverable alternatives to soluble organometallic complexes for cross-coupling reactions in fine-chemical synthesis. When developing SACs for these applications, it is often expected that the need for ligands, which are essential for organometallic catalysts, can be bypassed. Contrary to that, ligands remain almost always required for palladium atoms stabilized on commonly used functionalized carbon and carbon nitride supports, as the catalysts otherwise show limited activity.

View Article and Find Full Text PDF
Article Synopsis
  • Transmission electron microscopy (TEM) is essential in heterogeneous catalysis for measuring the size of metal nanoparticles, but current methods rely on spherical assumptions that limit accuracy.
  • Cycle-consistent generative adversarial networks (CycleGANs) are proposed as a solution to connect experimental TEM images with their atomic structure, enhancing the extraction of meaningful data.
  • A new network developed for estimating nanoparticle size can accurately assess ≈70% of observed particles, paving the way for more precise characterization of catalytic materials by overcoming limitations of traditional techniques.
View Article and Find Full Text PDF

Since the dawn of agitated brewing in the Paleolithic era, effective mixing has enabled efficient reactions. Emerging catalytic chemical polyolefin recycling processes present unique challenges, considering that the polymer melt has a viscosity three orders of magnitude higher than that of honey. The lack of protocols to achieve effective mixing may have resulted in suboptimal catalyst effectiveness.

View Article and Find Full Text PDF
Article Synopsis
  • - The current linear plastics economy faces significant challenges due to rising polymer demand, prompting the exploration of a circular alternative through chemical recycling using the waste-to-methanol-to-olefins (WMO) approach.
  • - This study evaluates both the environmental impacts and economic viability of this circular production route (CPR) in 2020 and 2050, revealing that it could substantially reduce environmental impacts by 2050, especially with a renewable energy mix.
  • - However, transitioning from a linear to a circular model presents challenges in 2020, leading to increased environmental impacts in certain areas, yet the economic analysis indicates that large-scale production of ethylene from waste polymers could be competitive with traditional fossil sources.
View Article and Find Full Text PDF

Heterogeneous catalysts are essential for thermocatalytic CO hydrogenation to methanol, a key route for sustainable production of this vital platform chemical and energy carrier. The primary catalyst families studied include copper-based, indium oxide-based, and mixed zinc-zirconium oxides-based materials. Despite significant progress in their design, research is often compartmentalized, lacking a holistic overview needed to surpass current performance limits.

View Article and Find Full Text PDF

Using heterogeneous single-atom catalysts (SACs) in the Suzuki-Miyaura coupling (SMC) has promising economic and environmental benefits over traditionally applied palladium complexes. However, limited mechanistic understanding hinders progress in their design and implementation. Our study provides critical insights into the working principles of Pd@CN, a promising SAC for the SMC.

View Article and Find Full Text PDF

Single-atom catalysts (SACs), possessing a uniform metal site structure, are a promising class of materials for selective oxidations of hydrocarbons. However, their design for targeted applications requires careful choice of metal-host combinations and suitable synthetic techniques. Here, we report iron atoms stabilised on defective hexagonal boron nitride (h-BN) mechanochemical activation in a ball mill as an effective catalyst for propylene production NO-mediated oxidative propane dehydrogenation (NO-ODHP), reaching 95% selectivity at 6% propane conversion and maintaining stable performance for 40 h on stream.

View Article and Find Full Text PDF

Developing efficient catalysts for syngas-based higher alcohol synthesis (HAS) remains a formidable research challenge. The chain growth and CO insertion requirements demand multicomponent materials, whose complex reaction dynamics and extensive chemical space defy catalyst design norms. We present an alternative strategy by integrating active learning into experimental workflows, exemplified via the FeCoCuZr catalyst family.

View Article and Find Full Text PDF

Curious about how chemistry can contribute to sustainable development? In this overview, we explain the essence of NCCR funding, the research focus and structural goals of NCCR Catalysis, and how these align with the sustainable development goals (SDGs). Additionally, we highlight opportunities for getting involved with our program.

View Article and Find Full Text PDF

Transitioning from both the direct and indirect use of fossil fuels to the renewable and sustainable resources of the near future demands a focal shift in catalysis research - from investigating catalytic reactions in isolation to developing coupled reactions for modern chemical value chains. In this Perspective, we discuss the status and emerging prospects of coupled catalytic reactions across various scales and provide key examples. Besides being a sustainable and essential alternative to current fossil-based processes, the coupling of catalytic reactions offers novel and scalable pathways to value-added chemicals.

View Article and Find Full Text PDF
Article Synopsis
  • * Ammonia and methanol production are key areas contributing to over 50% of CO emissions; life cycle assessments show that while fossil routes struggle to cut emissions past 10% by 2050, green technologies could reduce emissions by up to 90%.
  • * A proposed roadmap suggests a phased adoption of green production methods in 26 regions globally to achieve net-zero emissions by 2050, highlighting that these green technologies could also become more cost-effective over time.
View Article and Find Full Text PDF

Metal promotion could unlock high performance in zinc-zirconium catalysts, ZnZrO, for CO hydrogenation to methanol. Still, with most efforts devoted to costly palladium, the optimal metal choice and necessary atomic-level architecture remain unclear. Herein, we investigate the promotion of ZnZrO catalysts with small amounts (0.

View Article and Find Full Text PDF

Chemistry, a vital tool for sustainable development, faces a challenge due to the lack of clear guidance on actionable steps, hindering the optimal adoption of sustainability practices across its diverse facets from discovery to implementation. This Scientific Perspective explores established frameworks and principles, proposing a conciliated set of triple E priorities anchored on Environmental, Economic, and Equity pillars for research and decision making. We outline associated metrics, crucial for quantifying impacts, classifying them according to their focus areas and scales tackled.

View Article and Find Full Text PDF

Biomass waste-derived engineered biochar for CO capture presents a viable route for climate change mitigation and sustainable waste management. However, optimally synthesizing them for enhanced performance is time- and labor-intensive. To address these issues, we devise an active learning strategy to guide and expedite their synthesis with improved CO adsorption capacities.

View Article and Find Full Text PDF