Parkinson's Disease (PD) is characterized by midbrain dopaminergic (mDA) neuron degeneration in the ventral midbrain, contributing to debilitating motor symptoms. This study investigated whether Protein Tyrosine Phosphatase Receptor Sigma (PTPRS), a known inhibitor of axonal growth through chondroitin sulfate proteoglycan (CSPG) interaction, plays a role in mDA neuron survival, function, and regeneration in PD. Our data show that inhibition of PTPRS using intracellular sigma peptide (ISP) enhances human mDA neuron neurite outgrowth in vitro, suggesting an inhibitory role of this receptor in the differentiation of human embryonic stem cell (hESC)-derived mDA neurons in vitro.
View Article and Find Full Text PDFThe vasculature and mesenchyme exhibit distinct organ-specific characteristics adapted to local physiological needs, shaped by microenvironmental and cell-cell interactions from early development. To recapitulate this entire process, we co-differentiated mesoderm and endoderm within the same spheroid to vascularize lung and intestinal organoids from induced pluripotent stem cells (iPSCs). Bone morphogenetic protein (BMP) signaling fine-tuned the endoderm-to-mesoderm ratio, a critical step in generating appropriate proportions of endothelial and epithelial progenitors with tissue specificity.
View Article and Find Full Text PDFHuman pluripotent stem cells (hPSCs) have the potential to differentiate into all human somatic cell types allowing for an experimental platform to access otherwise inaccessible tissues through directed differentiation protocols. Access to tissue is especially critical for neurobiology where functional human tissue is rare. The prefrontal cortex is an evolutionarily expanded addition to the cerebral cortex, associated with higher order cognitive function.
View Article and Find Full Text PDFOrganoids, 3D organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present vascular network-inspired diffusible (VID) scaffolds to mimic physiological diffusion physics for generating functional organoids and phenotyping their drug response.
View Article and Find Full Text PDFDespite the litany of pathogenic variants linked to neurodevelopmental disorders (NDD) including autism (ASD) and intellectual disability , our understanding of the underlying mechanisms caused by risk genes remain unclear. Here, we leveraged a human pluripotent stem cell model to uncover the neurodevelopmental consequences of mutations in , a newly implicated risk gene . ZMYND11, known for its tumor suppressor function, encodes a histone-reader that recognizes sites of transcriptional elongation and acts as a co-repressor .
View Article and Find Full Text PDFFragile X syndrome (FXS), the leading genetic cause of intellectual disability, arises from gene silencing and loss of the FMRP protein. N6-methyladenosine (m A) is a prevalent mRNA modification essential for post-transcriptional regulation. FMRP is known to bind to and regulate the stability of m A-containing transcripts.
View Article and Find Full Text PDFHuman brain organoids are 3-dimensional brain-like tissues derived from human pluripotent stem cells and hold promising potential for modeling neurological, psychiatric, and developmental disorders. While the molecular and cellular aspects of human brain organoids have been intensively studied, their functional properties such as organoid neural networks (ONNs) are largely understudied. Here, we summarize recent research advances in understanding, characterization, and application of functional ONNs in human brain organoids.
View Article and Find Full Text PDFOrganoids, three-dimensional in vitro organ-like tissue cultures derived from stem cells, show promising potential for developmental biology, drug discovery, and regenerative medicine. However, the function and phenotype of current organoids, especially neural organoids, are still limited by insufficient diffusion of oxygen, nutrients, metabolites, signaling molecules, and drugs. Herein, we present Vascular network-Inspired Diffusible (VID) scaffolds to fully recapture the benefits of physiological diffusion physics for generating functional organoids and phenotyping their drug response.
View Article and Find Full Text PDFThe development of functional neurons is a complex orchestration of multiple signaling pathways controlling cell proliferation and differentiation. Because the balance of antioxidants is important for neuronal survival and development, we hypothesized that ferroptosis must be suppressed to gain neurons. We find that removal of antioxidants diminishes neuronal development and laminar organization of cortical organoids, which is fully restored when ferroptosis is inhibited by ferrostatin-1 or when neuronal differentiation occurs in the presence of vitamin A.
View Article and Find Full Text PDFRemyelination failure in diseases like multiple sclerosis (MS) was thought to involve suppressed maturation of oligodendrocyte precursors; however, oligodendrocytes are present in MS lesions yet lack myelin production. We found that oligodendrocytes in the lesions are epigenetically silenced. Developing a transgenic reporter labeling differentiated oligodendrocytes for phenotypic screening, we identified a small-molecule epigenetic-silencing-inhibitor (ESI1) that enhances myelin production and ensheathment.
View Article and Find Full Text PDFUnlabelled: To investigate the co-development of vasculature, mesenchyme, and epithelium crucial for organogenesis and the acquisition of organ-specific characteristics, we constructed a human pluripotent stem cell-derived organoid system comprising lung or intestinal epithelium surrounded by organotypic mesenchyme and vasculature. We demonstrated the pivotal role of co-differentiating mesoderm and endoderm via precise BMP regulation in generating multilineage organoids and gut tube patterning. Single-cell RNA-seq analysis revealed organ specificity in endothelium and mesenchyme, and uncovered key ligands driving endothelial specification in the lung (e.
View Article and Find Full Text PDFNeurodevelopmental disability (NDD) is recognised as one of the most common comorbidities in children with congenital heart disease (CHD) and is associated with altered brain structure and growth throughout the life course. Causes and contributors underpinning the CHD and NDD paradigm are not fully understood, and likely include innate patient factors, such as genetic and epigenetic factors, prenatal haemodynamic consequences as a result of the heart defect, and factors affecting the fetal-placental-maternal environment, such as placental pathology, maternal diet, psychological stress and autoimmune disease. Additional postnatal factors, including the type and complexity of disease and other clinical factors such as prematurity, peri-operative factors and socioeconomic factors are also expected to play a role in determining the final presentation of the NDD.
View Article and Find Full Text PDFSchwann cells (SCs) are the primary glia of the peripheral nervous system. SCs are involved in many debilitating disorders, including diabetic peripheral neuropathy (DPN). Here, we present a strategy for deriving SCs from human pluripotent stem cells (hPSCs) that enables comprehensive studies of SC development, physiology, and disease.
View Article and Find Full Text PDFBrain-inspired hardware emulates the structure and working principles of a biological brain and may address the hardware bottleneck for fast-growing artificial intelligence (AI). Current brain-inspired silicon chips are promising but still limit their power to fully mimic brain function for AI computing. Here, we develop , living AI hardware that harnesses the computation power of 3D biological neural networks in a brain organoid.
View Article and Find Full Text PDFAdvances in human pluripotent stem cell (hPSC) technology allow one to deconstruct the human body into specific disease-relevant cell types or create functional units representing various organs. hPSC-based models present a unique opportunity for the study of co-occurring disorders where "cause and effect" can be addressed. Poor neurodevelopmental outcomes have been reported in children with congenital heart diseases (CHD).
View Article and Find Full Text PDFThe biological function and disease association of human endogenous retroviruses (HERVs) are largely elusive. HERV-K(HML-2) has been associated with neurotoxicity, but there is no clear understanding of its role or mechanistic basis. We addressed the physiological functions of HERV-K(HML-2) in neuronal differentiation using CRISPR engineering to activate or repress its expression levels in a human-pluripotent-stem-cell-based system.
View Article and Find Full Text PDFFanconi anemia is an inherited genome instability syndrome characterized by interstrand cross-link hypersensitivity, congenital defects, bone marrow failure, and cancer predisposition. Although DNA repair mediated by Fanconi anemia genes has been extensively studied, how inactivation of these genes leads to specific cellular phenotypic consequences associated with Fanconi anemia is not well understood. Here we report that Fanconi anemia stem cells in the germline and in murine embryos display marked nonhomologous end joining (NHEJ)-dependent radiation resistance, leading to survival of progeny cells carrying genetic lesions.
View Article and Find Full Text PDFAberrant inflammation in the CNS has been implicated as a major player in the pathogenesis of human neurodegenerative disease. We developed a new approach to derive microglia from human pluripotent stem cells (hPSCs) and built a defined hPSC-derived tri-culture system containing pure populations of hPSC-derived microglia, astrocytes, and neurons to dissect cellular cross-talk along the neuroinflammatory axis in vitro. We used the tri-culture system to model neuroinflammation in Alzheimer's disease with hPSCs harboring the APP+/+ mutation and their isogenic control.
View Article and Find Full Text PDFCell Stem Cell
October 2020
COVID-19 has unfortunately halted lab work, conferences, and in-person networking, which is especially detrimental to researchers just starting their labs. Through social media and our reviewer networks, we met some early-career stem cell investigators impacted by the closures. Here, they introduce themselves and their research to our readers.
View Article and Find Full Text PDFAutism is a clinically heterogeneous neurodevelopmental disorder characterized by impaired social interactions, restricted interests, and repetitive behaviors. Despite significant advances in the genetics of autism, understanding how genetic changes perturb brain development and affect clinical symptoms remains elusive. Here, we present a multiplex human pluripotent stem cell (hPSC) platform, in which 30 isogenic disease lines are pooled in a single dish and differentiated into prefrontal cortex (PFC) lineages to efficiently test early-developmental hypotheses of autism.
View Article and Find Full Text PDFHuman brain organoids generated with current technologies recapitulate histological features of the human brain, but they lack a reproducible topographic organization. During development, spatial topography is determined by gradients of signaling molecules released from discrete signaling centers. We hypothesized that introduction of a signaling center into forebrain organoids would specify the positional identity of neural tissue in a distance-dependent manner.
View Article and Find Full Text PDFThe mechanistic basis of gliogenesis, which occurs late in human development, is poorly understood. Here we identify nuclear factor IA (NFIA) as a molecular switch inducing human glial competency. Transient expression of NFIA is sufficient to trigger glial competency of human pluripotent stem cell-derived neural stem cells within 5 days and to convert these cells into astrocytes in the presence of glial-promoting factors, as compared to 3-6 months using current protocols.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2018
Herpes simplex virus type 1 (HSV-1) encephalitis (HSE) is the most common sporadic viral encephalitis in Western countries. Some HSE children carry inborn errors of the Toll-like receptor 3 (TLR3)-dependent IFN-α/β- and -λ-inducing pathway. Induced pluripotent stem cell (iPSC)-derived cortical neurons with TLR3 pathway mutations are highly susceptible to HSV-1, due to impairment of cell-intrinsic TLR3-IFN immunity.
View Article and Find Full Text PDF