Current methods to engineer antigen-specific receptors rely on randomly integrating vectors or double-strand break induced targeted integration, both of which pose safety risks. To implement an all-in-one tool for multiplex knockout (KO) and knock in (KI), we expand the use of cytosine and adenine base editor (ABE) nickase activity to stimulate homology-directed repair (HDR) and insert clinically relevant chimeric antigen receptors (CARs) into specific loci. Through a novel sgRNA design strategy and a recombinant adeno-associated virus (rAAV) delivered DNA template, we enhanced the efficiency of ABE8e-stimulated HDR in human T cells.
View Article and Find Full Text PDFBackground: Natural killer (NK) cells' unique ability to kill transformed cells expressing stress ligands or lacking major histocompatibility complexes (MHC) has prompted their development for immunotherapy. However, NK cells have demonstrated only moderate responses against cancer in clinical trials.
Methods: Advanced genome engineering may thus be used to unlock their full potential.
Mol Ther Methods Clin Dev
June 2024
CRISPR-Cas9 and novel cas fusion proteins leveraging specific DNA targeting ability combined with deaminases or reverse transcriptases have revolutionized genome editing. However, their efficacy heavily relies upon protein variants, targeting single guide RNAs, and surrounding DNA sequence context within the targeted loci. This necessitates the need for efficient and rapid screening methods to evaluate these editing reagents and designs.
View Article and Find Full Text PDFMonocytes and their downstream effectors are critical components of the innate immune system. Monocytes are equipped with chemokine receptors, allowing them to migrate to various tissues, where they can differentiate into macrophage and dendritic cell subsets and participate in tissue homeostasis, infection, autoimmune disease, and cancer. Enabling genome engineering in monocytes and their effector cells will facilitate a myriad of applications for basic and translational research.
View Article and Find Full Text PDFBackground & Aims: Zinc finger and BTB domain containing 20 () has been implicated as a potential oncogene in liver cancer. However, knockout studies have shown it to be a transcriptional repressor of the alpha-foetoprotein () gene in adult liver, and reduced levels of allow for upregulation of with increased tumour severity in certain cases of hepatocellular carcinoma (HCC). As there are many discrepancies in the literature regarding its role in liver tumourigenesis, the aim of this study was to elucidate the role of in HCC tumourigenesis.
View Article and Find Full Text PDFThe non-viral, integrating Sleeping Beauty (SB) transposon system is efficient in treating systemic monogenic disease in mice, including hemophilia A and B caused by deficiency of blood clotting factors and mucopolysaccharidosis types I and VII caused by α-L-iduronidase (IDUA) and β-glucuronidase (GUSB) deficiency, respectively. Modified approaches of the hydrodynamics-based procedure to deliver transposons to the liver in dogs were recently reported. Using the transgenic canine reporter secreted alkaline phosphatase (cSEAP), transgenic protein in the plasma was demonstrated for up to 6 weeks post infusion.
View Article and Find Full Text PDFThe Sleeping Beauty transposon system has been extensively tested for integration of reporter and therapeutic genes in vitro and in vivo in mice. Dogs were used as a large animal model for human therapy and minimally invasive infusion of DNA solutions. DNA solutions were delivered into the entire liver or the left side of the liver using balloon catheters for temporary occlusion of venous outflow.
View Article and Find Full Text PDFACS Biomater Sci Eng
January 2016
The development and thorough characterization of nonviral delivery agents for nucleic acid and genome editing therapies are of high interest to the field of nanomedicine. Indeed, this vehicle class offers the ability to tune chemical architecture/biological activity and readily package nucleic acids of various sizes and morphologies for a variety of applications. Herein, we present the synthesis and characterization of a class of trehalose-based block copolycations designed to stabilize polyplex formulations for lyophilization and in vivo administration.
View Article and Find Full Text PDFThe Sleeping Beauty transposon system, a non-viral, integrating vector that can deliver the alpha-L-iduronidase-encoding gene, is efficient in correcting mucopolysaccharidosis type I in NOD/SCID mice. However, in previous studies we failed to attain reliable long-term alpha-L-iduronidase expression in immunocompetent mice. Here, we focused on achieving sustained high-level expression in immunocompetent C57BL/6 mice.
View Article and Find Full Text PDFWe previously utilized a Sleeping Beauty (SB) transposon mutagenesis screen to discover novel drivers of HCC. This approach identified recurrent mutations within the Dlk1-Dio3 imprinted domain, indicating that alteration of one or more elements within the domain provides a selective advantage to cells during the process of hepatocarcinogenesis. For the current study, we performed transcriptome and small RNA sequencing to profile gene expression in SB-induced HCCs in an attempt to clarify the genetic element(s) contributing to tumorigenesis.
View Article and Find Full Text PDFNucleic Acids Res
April 2013
Studying complex biological processes such as cancer development, stem cell induction and transdifferentiation requires the modulation of multiple genes or pathways at one time in a single cell. Herein, we describe straightforward methods for rapid and efficient assembly of bacterial marker free multigene cassettes containing up to six complementary DNAs/short hairpin RNAs. We have termed this method RecWay assembly, as it makes use of both Cre recombinase and the commercially available Gateway cloning system.
View Article and Find Full Text PDFUnlabelled: Hepatocellular carcinoma (HCC) is one of the deadliest solid cancers and is the third leading cause of cancer-related death. There is a universal estimated male/female ratio of 2.5, but the reason for this is not well understood.
View Article and Find Full Text PDFSleeping Beauty (SB) transposons have been effective in delivering therapeutic genes to treat certain diseases in mice. Hydrodynamic gene delivery of integrating transposons to 5-20% of the hepatocytes in a mouse results in persistent elevated expression of the therapeutic polypeptides that can be secreted into the blood for activity throughout the animal. An alternative route of delivery is ex vivo transformation with SB transposons of hematopoietic cells, which then can be reintroduced into the animal for treatment of cancer.
View Article and Find Full Text PDFUnlabelled: The mechanisms associated with hepatitis B virus (HBV)-induced hepatocellular carcinoma (HCC) remain elusive, and there are currently no well-established animal models for studying this disease. Using the Sleeping Beauty transposon as a delivery system, we introduced an oncogenic component of HBV, the hepatitis B virus X (HBx) gene, into the livers of fumarylacetoacetate hydrolase (Fah) mutant mice via hydrodynamic tail vein injections. Coexpression of Fah complementary DNA from the transposon vector allowed for the selective repopulation of genetically corrected hepatocytes in Fah mutant mice.
View Article and Find Full Text PDFThe Sleeping Beauty (SB) transposon system can direct integration of DNA sequences into mammalian genomes. The SB system comprises a transposon and transposase that "cuts" the transposon from a plasmid and "pastes" it into a recipient genome. The transposase gene may integrate very rarely and randomly into genomes, which has led to concerns that continued expression might support continued remobilization of transposons and genomic instability.
View Article and Find Full Text PDFTwo methods of systemic gene delivery have been extensively explored, using the mouse as a model system: hydrodynamic delivery, wherein a DNA solution equivalent in volume to 10% of the mouse weight is injected intravenously in less than 10 sec, and condensation of DNA with polyethylenimine (PEI) for standard intravenous infusion. Our goal in this study was to evaluate quantitatively the kinetics of gene expression, using these two methods for delivery of Sleeping Beauty transposons. Transposons carrying a luciferase expression cassette were injected into mice either hydrodynamically or after condensation with PEI at a PEI nitrogen-to-DNA phosphate ratio of 7.
View Article and Find Full Text PDFThe Sleeping Beauty (SB) transposon system is a nonviral vector that directs transgene integration into vertebrate genomes. We hydrodynamically delivered SB transposon plasmids encoding human alpha-L-iduronidase (hIDUA) at two DNA doses, with and without an SB transposase gene, to NOD.129(B6)-Prkdc(scid) IDUA(tm1Clk)/J mice.
View Article and Find Full Text PDFNonviral, DNA-mediated gene transfer is an alternative to viral delivery systems for expressing new genes in cells and tissues. The Sleeping Beauty (SB) transposon system combines the advantages of viruses and naked DNA molecules for gene therapy purposes; however, efficacious delivery of DNA molecules to animal tissues can still be problematic. Here we describe the hydrodynamic delivery procedure for the SB transposon system that allows efficient delivery to the liver in the mouse.
View Article and Find Full Text PDFThe Sleeping Beauty (SB) transposon system mediates chromosomal integration and stable gene expression when an engineered SB transposon is delivered along with transposase. One concern in the therapeutic application of the SB system is that persistent expression of transposase could result in transposon instability and genotoxicity. Here, we tested the use of transposase-encoding RNA plus transposon DNA for correction of murine fumarylacetoacetate hydrolase (FAH) deficiency.
View Article and Find Full Text PDFBackground: The Sleeping Beauty (SB) transposon system is a non-viral vector system that can integrate precise sequences into chromosomes. We evaluated the SB transposon system as a tool for gene therapy of mucopolysaccharidosis (MPS) types I and VII.
Methods: We constructed SB transposon plasmids for high-level expression of human beta-glucuronidase (hGUSB) or alpha-L-iduronidase (hIDUA).
Mobile genetic elements with the ability to integrate genetic information into chromosomes can cause disease over short periods of time and shape genomes over eons. These elements can be used for functional genomics, gene transfer and human gene therapy. However, their integration-site preferences, which are critically important for these uses, are poorly understood.
View Article and Find Full Text PDFThe function of most vertebrate genes remains unknown or uncertain. Insertional mutagenesis offers one approach to identify and understand the function of these genes. Transposons have been used successfully in lower organisms and plants for insertional mutagenesis, but until activation of the Sleeping Beauty (SB) transposon system, there was no indication of active DNA-based transposons in vertebrates.
View Article and Find Full Text PDFThe Sleeping Beauty (SB) transposon system, derived from teleost fish sequences, is extremely effective at delivering DNA to vertebrate genomes, including those of humans. We have examined several parameters of the SB system to improve it as a potential, nonviral vector for gene therapy. Our investigation centered on three features: the carrying capacity of the transposon for efficient integration into chromosomes of HeLa cells, the effects of overexpression of the SB transposase gene on transposition rates, and improvements in the activity of SB transposase to increase insertion rates of transgenes into cellular chromosomes.
View Article and Find Full Text PDF