Publications by authors named "James I Novak"

Objective: Three-dimensional (3D) printing technology presents a promising avenue for the development of affordable neurosurgical simulation models, addressing many challenges related to the use of cadavers, animal models, and direct patient engagement. The aim of this study is to introduce and evaluate a new high-fidelity neurosurgical simulation model targeted for both burr hole and craniotomy procedures.

Methods: 12 different 3D-printed skull models were manufactured using 5 different materials (polyether ether ketone, White Resin, Rigid 10K, Bone, and Skull) from 3 different 3D print processes (fused filament fabrication, stereolithography [SLA], and material jetting).

View Article and Find Full Text PDF
Article Synopsis
  • Intracranial aneurysms (IAs) affect 2-6% of people globally and pose a high risk of mortality (30-50%) if they rupture.
  • A new open-access dataset of time-of-flight magnetic resonance angiography (TOF-MRA) images has been created, containing scans from 63 patients, with 24 of them having undergone follow-up imaging.
  • The dataset, evaluated by a neuroradiologist, includes aneurysm and vessel segmentations, clinical annotations, and 3D models, aiming to enhance research on IA growth, support surgical training, and improve rupture prediction technologies.
View Article and Find Full Text PDF

Objective: 3D printing is increasingly used to fabricate three-dimensional neurosurgical simulation models, making training more accessible and economical. 3D printing includes various technologies with different capabilities for reproducing human anatomy. This study evaluated different materials across a broad range of 3D printing technologies to identify the combination that most precisely represents the parietal region of the skull for burr hole simulation.

View Article and Find Full Text PDF

Immobilization devices are used to obtain reproducible patient setup during radiotherapy treatment, improving accuracy, and reducing damage to surrounding healthy tissue. Additive manufacturing is emerging as a viable method for manufacturing and personalizing such devices. The goal of this study was to investigate the dosimetric and mechanical properties of a recent additive technology called multi-jet fusion (MJF) for radiotherapy applications, including the ability for this process to produce full color parts.

View Article and Find Full Text PDF

Background: Intracranial surgery can be complex and high risk. Safety, ethical and financial factors make training in the area challenging. Head model 3-dimensional (3D) printing is a realistic training alternative to patient and traditional means of cadaver and animal model simulation.

View Article and Find Full Text PDF

Background And Purpose: Radiotherapy is one of the most effective cancer treatment techniques, however, delivering the optimal radiation dosage is challenging due to movements of the patient during treatment. Immobilisation devices are typically used to minimise motion. This paper reviews published research investigating the use of 3D printing (additive manufacturing) to produce patient-specific immobilisation devices, and compares these to traditional devices.

View Article and Find Full Text PDF

In the past decade, 3D printing technologies have been adopted for the fabrication of microfluidic devices. Extrusion-based approaches including fused filament fabrication (FFF), jetting technologies including inkjet 3D printing, and vat photopolymerization techniques including stereolithography (SLA) and digital light projection (DLP) are the 3D printing methods most frequently adopted by the microfluidic community. Each printing technique has merits toward the fabrication of microfluidic devices.

View Article and Find Full Text PDF

3D printing provides new opportunities to create devices used during radiotherapy treatments, yet little is known about the effect process parameters play on the proposed devices. This study investigates the combined influence of infill pattern, infill density and print orientation on surface dose, as well as on the mechanical properties of 3D printed samples, identifying the optimal infill patterns for use in radiotherapy devices including immobilisation. Fused deposition modelling (FDM) was used to produce sixty samples in two orientations for surface dose measurement, utilising ten different infill patterns.

View Article and Find Full Text PDF