Naringenin and naringin, bioactive flavonoids from citrus fruits, exhibit neuroprotective effects, showing promise for neurodegenerative diseases like Alzheimer's and Parkinson's. Additionally, they demonstrate significant anticancer potential, modulating key signaling pathways involved in tumor growth, apoptosis, and metastasis, thus expanding their therapeutic applications in cancer treatment. These compounds interact with nicotinic acetylcholine receptors (nAChRs), a class of ligand-gated ion channels critical for modulating neurotransmission within the central nervous system.
View Article and Find Full Text PDFThe insect olfactory system is vital for survival, enabling the recognition and discrimination of a wide range of odorants present in the environment. This process is mediated by odorant receptors (Ors) and the highly conserved co-receptor Orco. Insect Ors are structurally distinct from mammalian olfactory receptors, a divergence that presents unique advantages for developing insect-specific pest control strategies.
View Article and Find Full Text PDFComput Struct Biotechnol J
March 2025
The relationship between oxidative stress and glycine receptors is complex, involving multiple mechanisms through which reactive oxygen species can modify glycine receptor function. Understanding these interactions is essential for developing therapeutic strategies to mitigate the effects of oxidative stress on inhibitory neurotransmission in various neurological disorders. Inhibitory glycine receptors play a critical role in regulating the final grand postsynaptic potential by attenuating excitatory postsynaptic potentials through inhibitory postsynaptic potentials in postsynaptic neurons.
View Article and Find Full Text PDFChem Biol Interact
February 2025
Celastrol and triptolide, bioactive compounds isolated from Tripterygium wilfordii Hook F, have demonstrated significant pharmacological effects across various biological pathways, making them subjects of extensive research for potential therapeutic applications. Celastrol and triptolide are known to have therapeutic use in neurodegenerative diseases including Alzheimer's disease and Parkinson's disease through neuroprotective action. Nicotinic acetylcholine receptors (nAChRs) are a subtype of cholinergic receptors and are ligand-gated ion channels that play an essential role in regulating synaptic transmission in the central nervous system.
View Article and Find Full Text PDFJ Microbiol Biotechnol
November 2024
This study investigates the modulatory effects of nicergoline, a major bioactive compound derived from ergot fungus, on the 5-hydroxytryptamine 3A (5-HT3A) receptor. Utilizing a two-electrode voltage-clamp technique, we evaluated the impact of nicergoline on the 5-HT-induced inward current (I) in 5-HT3A receptors. Our findings reveal that nicergoline inhibits I in a reversible and concentration-dependent manner.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Methylergometrine has widely been used pharmacologically to treat conditions such as pain, addiction, vasoconstriction, migraines, and Parkinson's disease. Despite its side effects, it is used as a therapeutic agent and research material for various diseases based on its natural potential; however, the regulatory effect of its interaction with the nicotinic acetylcholine receptor (nAChR) has not yet been investigated. The α3β4 nAChR is an ion channel essential for neurotransmission within the sympathetic, parasympathetic, and autonomic nervous systems.
View Article and Find Full Text PDF