Publications by authors named "Iyshwarya Balasubramanian"

polymorphisms (G2019S/N2081D) that increase susceptibility to Parkinson's disease and Crohn's disease (CD) lead to LRRK2 kinase hyperactivity and suppress autophagy. This connection suggests that LRRK2 kinase inhibition, a therapeutic strategy being explored for Parkinson's disease, may also benefit patients with CD. Paneth cell homeostasis is tightly regulated by autophagy, and their dysfunction is a precursor to gut inflammation in CD.

View Article and Find Full Text PDF

Ruminococcus gnavus is a mucolytic commensal bacterium whose increased gut colonization has been associated with chronic inflammatory and metabolic diseases in humans. Whether R. gnavus metabolites can modulate host intestinal physiology remains largely understudied.

View Article and Find Full Text PDF

Lysozyme is a β-1,4-glycosidase that hydrolyzes the polysaccharide backbone of bacterial cell walls. With an additional bactericidal function mediated by a separate protein domain, lysozyme is considered a uniquely important antimicrobial molecule contributing to the host's innate immune response to infection. Elevated lysozyme production is found in various inflammatory conditions while patients with genetic risks for inflammatory bowel diseases demonstrate abnormal lysozyme expression, granule packaging, and secretion in Paneth cells.

View Article and Find Full Text PDF

Background & Aims: Lacticaseibacillus rhamnosus GG (LGG) is the world's most consumed probiotic but its mechanism of action on intestinal permeability and differentiation along with its interactions with an essential source of signaling metabolites, dietary tryptophan (trp), are unclear.

Methods: Untargeted metabolomic and transcriptomic analyses were performed in LGG monocolonized germ-free mice fed trp-free or -sufficient diets. LGG-derived metabolites were profiled in vitro under anaerobic and aerobic conditions.

View Article and Find Full Text PDF

Paneth cells (PCs), a specialized secretory cell type in the small intestine, are increasingly recognized as having an essential role in host responses to microbiome and environmental stresses. Whether and how commensal and pathogenic microbes modify PC composition to modulate inflammation remain unclear. Using newly developed PC-reporter mice under conventional and gnotobiotic conditions, we determined PC transcriptomic heterogeneity in response to commensal and invasive microbes at single cell level.

View Article and Find Full Text PDF

As a highly regenerative organ, the intestine is a promising source for cellular reprogramming for replacing lost pancreatic β cells in diabetes. Gut enterochromaffin cells can be converted to insulin-producing cells by forkhead box O1 (FoxO1) ablation, but their numbers are limited. In this study, we report that insulin-immunoreactive cells with Paneth/goblet cell features are present in human fetal intestine.

View Article and Find Full Text PDF

Although Wnt signaling is clearly important for the intestinal epithelial homeostasis, the relevance of various sources of Wnt ligands themselves remains incompletely understood. Blocking the release of Wnt in distinct stromal cell types suggests obligatory functions of several stromal cell sources and yields different observations. The physiological contribution of epithelial Wnt to tissue homeostasis remains unclear.

View Article and Find Full Text PDF

A number of studies have examined the effects of 1,25-dihydroxyvitamin D (1,25(OH) D ) on intestinal inflammation driven by immune cells, while little information is currently available about its impact on inflammation caused by intestinal epithelial cell (IEC) defects. Mice lacking IEC-specific Rab11a a recycling endosome small GTPase resulted in increased epithelial cell production of inflammatory cytokines, notably IL-6 and early onset of enteritis. To determine whether vitamin D supplementation may benefit hosts with epithelial cell-originated mucosal inflammation, we evaluated in vivo effects of injected 1,25(OH) D or dietary supplement of a high dose of vitamin D on the gut phenotypes of IEC-specific Rab11a knockout mice (Rab11a ).

View Article and Find Full Text PDF

Background: Lactobacillus rhamnosus GG (LGG) is the most widely used probiotic, but the mechanisms underlying its beneficial effects remain unresolved. Previous studies typically inoculated LGG in hosts with established gut microbiota, limiting the understanding of specific impacts of LGG on host due to numerous interactions among LGG, commensal microbes, and the host. There has been a scarcity of studies that used gnotobiotic animals to elucidate LGG-host interaction, in particular for gaining specific insights about how it modifies the metabolome.

View Article and Find Full Text PDF

Within the intestinal epithelium, regulation of intracellular protein and vesicular trafficking is of utmost importance for barrier maintenance, immune responses, and tissue polarity. RAB11A is a small GTPase that mediates the anterograde transport of protein cargos to the plasma membrane. Loss of RAB11A-dependent trafficking in mature intestinal epithelial cells results in increased epithelial proliferation and nuclear accumulation of Yes-associated protein (YAP), a key Hippo-signaling transducer that senses cell-cell contacts and regulates tissue growth.

View Article and Find Full Text PDF
Article Synopsis
  • - Paneth cells produce C-type lysozyme, which helps break down bacterial cell walls and are typically found in the cecum and ascending colon, with their absence in regions like the descending colon linked to inflammatory bowel disease (IBD).
  • - Research showed that disrupting Paneth cell lysozyme in mice protected them from colitis, reduced their immune responses to bacteria, and allowed the growth of certain bacteria associated with Crohn's disease.
  • - The production and presence of lysozyme have a significant role in managing inflammation in the gut, suggesting that its balance is crucial for preventing IBD-related complications.
View Article and Find Full Text PDF

Paneth cells are residents of the intestinal epithelium. Abnormal appearance of Paneth cells has been widely documented in non-intestinal tissues within the digestive tract and even observed in non-gastrointestinal organs. Although metaplastic Paneth cells are part of the overarching pathology of intestinal metaplasia (IM), only a fraction of intestinal metaplastic lesions contain Paneth cells.

View Article and Find Full Text PDF

The effects of polarized membrane trafficking in mature epithelial tissue on cell growth and cancer progression have not been fully explored . A majority of colorectal cancers have reduced and mislocalized Rab11, a small GTPase dedicated to trafficking of recycling endosomes. Patients with low Rab11 protein expression have poor survival rates.

View Article and Find Full Text PDF

Paneth cells are post-mitotic intestinal epithelial cells supporting the stem cell niche and mucosal immunity. Paneth cell pathologies are observed in various gastrointestinal diseases, but their plasticity and response to genomic and environmental challenges remain unclear. Using a knockin allele engineered at the mouse Lyz1 locus, we performed detailed Paneth cell-lineage tracing.

View Article and Find Full Text PDF

was the first susceptibility gene identified for Crohn's disease (CD), one of the major forms of inflammatory bowel disease (IBD). The field of NOD2 research has opened up many questions critical to understanding the complexities of microbiota-host interactions. In addition to sensing its specific bacterial components as a cytosolic pattern recognition receptor, NOD2 also appears to shape the colonization of intestinal microbiota.

View Article and Find Full Text PDF