Background: The herbicide sector needs new modes of action and new ecofriendly molecules as active ingredients. In this study, we investigated the stimulation of the plant immune system as a strategy to reduce weed growth, a mechanism not exploited by any commercial herbicide. Plants possess an innate immune system able to detect pathogens' molecules such as cerato-platanin (CP), a fungal protein elicitor produced by Ceratocystis platani.
View Article and Find Full Text PDFTo unravel the complex interactions between microplastics (MPs), plants, and pathogens, Arabidopsis thaliana plants were grown for 3 weeks in soils containing polyethylene terephthalate (PET) or polyvinyl chloride (PVC) MPs (0.2% and 0.5% w/w), and leaves were then exposed to the PAMP (Pathogen-Associated Molecular Pattern) protein cerato-platanin (CP) or Botrytis cinerea conidia.
View Article and Find Full Text PDFPlant hormones play a central role in various physiological functions and mediate defense responses against (a)biotic stresses. Jasmonic acid (JA) has emerged as one of the key phytohormones involved in the response to necrotrophic pathogens. Under stressful conditions, plants can also produce small molecules, such as methylglyoxal (MG), a cytotoxic aldehyde.
View Article and Find Full Text PDFThe bacterium is known to be beneficial for plants and has been frequently isolated from the rhizosphere of crops. In the present work, we isolated from the phyllosphere of an ornamental plant an epiphytic strain of that we named Ep2.2 and investigated its possible application in crop protection.
View Article and Find Full Text PDFSolanum lycopersicum L., a crop grown worldwide with a high nutritional value for the human diet, was used to test the impact of microplastics on plant growth, productivity, and fruit quality. Two of the most represented microplastics in soils, polyethylene terephthalate (PET) and polyvinyl chloride (PVC), were tested.
View Article and Find Full Text PDFJ Fungi (Basel)
January 2023
Passion fruit ( Sims) is widely cultivated in tropic and sub-tropic regions for the production of fruit, flowers, cosmetics, and for pharmacological applications. Its high economic, nutritional, and medical values elicit the market demand, and the growing areas are rapidly increasing. Leaf blight caused by is a new and emerging disease of passion fruit in Guizhou, in southwest China, where the unique karst mountainous landscape and climate conditions are considered potential areas of expansion for passion fruit production.
View Article and Find Full Text PDFCerato-ulmin (CU) is a 75-amino-acid-long protein that belongs to the hydrophobin family. It self-assembles at hydrophobic-hydrophilic interfaces, forming films that reverse the wettability properties of the bound surface: a capability that may confer selective advantages to the fungus in colonizing and infecting elm trees. Here, we show for the first time that CU can elicit a defense reaction (induction of phytoalexin synthesis and ROS production) in non-host plants () and exerts its eliciting capacity more efficiently when in its soluble monomeric form.
View Article and Find Full Text PDFPlant Dis
September 2023
Wheat ( L.) is an important cereal crop, widely grown throughout the temperate zones, and also suitable for cultivation at higher elevations. Fusarium head blight (FHB) is a highly destructive disease of wheat throughout the globe.
View Article and Find Full Text PDFPeptaibols are non-ribosomal linear peptides naturally produced by a wide variety of fungi and represent the largest group of peptaibiotic molecules produced by species. Trichogin GA IV is an 11-residue peptaibol naturally produced by . Peptaibols possess the ability to form pores in lipid membranes or perturb their surface, and have been studied as antibiotics or anticancer drugs in human medicine, or as antimicrobial molecules against plant pathogens.
View Article and Find Full Text PDFMethylglyoxal (MG) is a cytotoxic compound often produced as a side product of metabolic processes such as glycolysis, lipid peroxidation, and photosynthesis. MG is mainly scavenged by the glyoxalase system, a two-step pathway, in which the coordinate activity of GLYI and GLYII transforms it into D-lactate, releasing GSH. In , a member of the GLYI family named GLYI4 has been recently characterized.
View Article and Find Full Text PDFAntioxidants (Basel)
April 2021
Isoprene (CH) is a small lipophilic, volatile organic compound (VOC), synthesized in chloroplasts of plants through the photosynthesis-dependent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Isoprene-emitting plants are better protected against thermal and oxidative stresses but only about 20% of the terrestrial plants are able to synthesize isoprene. Many studies have been performed to understand the still elusive isoprene protective mechanism.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
May 2021
Among their various functions, the members of the cerato-platanin family can stimulate plants' defense responses and induce resistance against microbial pathogens. Recent results suggest that conserved loops, also involved in chitin binding, might be a structural motif central for their eliciting activity. Here, we focus on cerato-platanin and its orthologous cerato-populin, searching for a rationale of their diverse efficiency to elicit plants' defense and to interact with oligosaccharides.
View Article and Find Full Text PDFPlant hormones play a central role in various physiological functions and in mediating defense responses against (a)biotic stresses. In response to primary metabolism alteration, plants can produce also small molecules such as methylglyoxal (MG), a cytotoxic aldehyde. MG is mostly detoxified by the combined actions of the enzymes glyoxalase I (GLYI) and glyoxalase II (GLYII) that make up the glyoxalase system.
View Article and Find Full Text PDFThere is an urgent need for new sustainable solutions to support agriculture in facing current environmental challenges. In particular, intensification of productivity and food security needs require sustainable exploitation of natural resources and metabolites. Here, we bring the attention to the agronomic potential of volatile organic compounds (VOCs) emitted from leaves, as a natural and eco-friendly solution to defend plants from stresses and to enhance crop production.
View Article and Find Full Text PDFEndogenous levels of β-aminobutyric acid (BABA) increase after the molecular recognition of pathogen presence. BABA is accumulated differently during resistance or susceptibility to disease. The priming molecule β-aminobutyric acid has been recently shown to be a natural product of plants, and this has provided significance to the previous discovery of a perception mechanism in Arabidopsis.
View Article and Find Full Text PDFPriming is an adaptive strategy that improves the defensive capacity of plants. This phenomenon is marked by an enhanced activation of induced defense mechanisms. Stimuli from pathogens, beneficial microbes, or arthropods, as well as chemicals and abiotic cues, can trigger the establishment of priming by acting as warning signals.
View Article and Find Full Text PDFThe defense system of a plant can be primed for increased defense, resulting in an augmented stress resistance and/or tolerance. Priming can be triggered by biotic and abiotic stimuli, as well as by chemicals such as β-aminobutyric acid (BABA), a nonprotein amino acid considered so far a xenobiotic. Since the perception mechanism of BABA has been recently identified in Arabidopsis thaliana, in the present study we explored the possibility that plants do synthesize BABA.
View Article and Find Full Text PDFPlant Mol Biol
August 2016
Plants are exposed to recurring biotic and abiotic stresses that can, in extreme situations, lead to substantial yield losses. With the changing environment, the stress pressure is likely to increase and sustainable measures to alleviate the effect on our crops are sought. Priming plants for better stress resistance is one of the sustainable possibilities to reach this goal.
View Article and Find Full Text PDFFront Plant Sci
January 2015
Microbe-associated molecular patterns (MAMPs) lead to the activation of the first line of plant defence. Few fungal molecules are universally qualified as MAMPs, and proteins belonging to the cerato-platanin protein (CPP) family seem to possess these features. Cerato-platanin (CP) is the name-giving protein of the CPP family and is produced by Ceratocystis platani, the causal agent of the canker stain disease of plane trees (Platanus spp.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2014
Cerato-platanin (CP) is a non-catalytic protein with a double ψβ-barrel fold located in the cell wall of the phytopathogenic fungus Ceratocystis platani. CP is released during growth and induces defence-related responses in plants. CP is also the first member of the "cerato-platanin family" (CPF) (Pfam PF07249).
View Article and Find Full Text PDFThe cerato-platanin (CP) family consists of fungal-secreted proteins involved in various stages of the host-fungus interaction and acting as phytotoxins and elicitors of defense responses. The founder member of this family is CP, a non-catalytic protein with a six-stranded double-ψβ-barrel fold. Cerato-populin (Pop1) is an ortholog showing low sequence identity with CP.
View Article and Find Full Text PDF