Publications by authors named "Isabelle R Goncalves"

The fungal cell wall occupies a central place in the interaction between fungi and their environment. This study focuses on the role of the putative polysaccharide synthase Cps1 in the physiology, development and virulence of the grey mold-causing agent . Deletion of the gene does not affect the germination of the conidia (asexual spores) or the early mycelial development, but it perturbs hyphal expansion after 24 h, revealing a two-phase hyphal development that has not been reported so far.

View Article and Find Full Text PDF

Glutamine amidotransferases, enzymes that transfer nitrogen from Gln to various cellular metabolites, are modular, with the amidotransferase (GATase) domain hydrolyzing Gln, generating ammonia and the acceptor domain catalyzing the addition of nitrogen onto its cognate substrate. GMP synthetase (GMPS), an enzyme in the de novo purine nucleotide biosynthetic pathway, is a glutamine amidotransferase that catalyzes the synthesis of GMP from XMP. The reaction involves activation of XMP though adenylation by ATP in the ATP pyrophosphatase (ATPPase) active site, followed by channeling and attack of NH generated in the GATase pocket.

View Article and Find Full Text PDF

Branching enzymes (BE) are responsible for the formation of branching points at the 1,6 position in glycogen and starch, by catalyzing the cleavage of α-1,4-linkages and the subsequent transfer by introducing α-1,6-linked glucose branched points. BEs are found in the large GH13 family, eukaryotic BEs being mainly classified in the GH13_8 subfamily, GH13_9 grouping almost exclusively prokaryotic enzymes. With the aim of contributing to the understanding of the mode of recognition and action of the enzymes belonging to GH13_8, and to the understanding of features distinguishing these enzymes from those belonging to subfamily 13_9, we solved the crystal structure of the glycogen branching enzyme (GBE) from the yeast Candida glabrata, CgGBE, in ligand-free forms and in complex with a maltotriose.

View Article and Find Full Text PDF

The necrotrophic plant-pathogen fungus Botrytis cinerea produces multicellular appressoria dedicated to plant penetration, named infection cushions (IC). A microarray analysis was performed to identify genes upregulated in mature IC. The expression data were validated by RT-qPCR analysis performed in vitro and in planta, proteomic analysis of the IC secretome and biochemical assays.

View Article and Find Full Text PDF

The type II secretion system (T2SS) transports fully folded proteins of various functions and structures through the outer membrane of Gram-negative bacteria. The molecular mechanisms of substrate recruitment by T2SS remain elusive but a prevailing view is that the secretion determinants could be of a structural nature. The phytopathogenic γ-proteobacteria, Pectobacterium carotovorum and Dickeya dadantii, secrete similar sets of homologous plant cell wall degrading enzymes, mainly pectinases, by similar T2SSs, called Out.

View Article and Find Full Text PDF

Few secreted proteins involved in plant infection common to necrotrophic bacteria, fungi and oomycetes have been identified except for plant cell wall-degrading enzymes. Here we study a family of iron-binding proteins that is present in Gram-negative and Gram-positive bacteria, fungi, oomycetes and some animals. Homolog proteins in the phytopathogenic bacterium Dickeya dadantii (IbpS) and the fungal necrotroph Botrytis cinerea (BcIbp) are involved in plant infection.

View Article and Find Full Text PDF

Background: Chitin, the second most abundant biopolymer on earth after cellulose, is found in probably all fungi, many animals (mainly invertebrates), several protists and a few algae, playing an essential role in the development of many of them. This polysaccharide is produced by type 2 glycosyltransferases, called chitin synthases (CHS). There are several contradictory classifications of CHS isoenzymes and, as regards their evolutionary history, their origin and diversity is still a matter of debate.

View Article and Find Full Text PDF
Article Synopsis
  • Aft1 and KlAft are yeast transcription activators that control iron-uptake genes but bind to different DNA sequences (TGCACCC for Aft1 and PuCACCC for KlAft).
  • The study explores a nonconserved region in their DNA-binding domains, which is crucial for Aft1's function and for S. cerevisiae's growth under iron-limited conditions.
  • By swapping these regions between Aft1 and KlAft, the research shows that the Aft1 region allows KlAft to bind to Aft1’s DNA site, indicating evolved changes in the DNA-binding specificity that affect iron regulation.
View Article and Find Full Text PDF

Although essential in many cellular processes, metals become toxic when they are present in excess and constitute a global environmental hazard. To overcome this stress, fungi have evolved several mechanisms at both intracellular and extracellular levels. In particular, fungi are well known for their ability to secrete a large panel of proteins.

View Article and Find Full Text PDF

Background: DIRS1-like elements compose one superfamily of tyrosine recombinase-encoding retrotransposons. They have been previously reported in only a few diverse eukaryote species, describing a patchy distribution, and little is known about their origin and dynamics. Recently, we have shown that these retrotransposons are common among decapods, which calls into question the distribution of DIRS1-like retrotransposons among eukaryotes.

View Article and Find Full Text PDF

Iron homeostasis in fungi is regulated at the transcriptional level by two different mechanisms. It is mediated by a conserved GATA-type repressor in most fungi except in the yeast Saccharomyces cerevisiae, where it is controlled by the transcription activators Aft1 and Aft2. These activators are encoded by the paralogous genes AFT1 and AFT2, which result from the whole-genome duplication.

View Article and Find Full Text PDF

Duplications of genes are widely considered to be a driving force in the evolutionary process. The fate of such duplicated genes (paralogs) depends mainly on the early stages of their evolution. Therefore, the study of duplications that have already started to diverge is useful to better understand their evolution.

View Article and Find Full Text PDF

We describe a strategy for systematic amplification of chitin synthase genes (chs) in the filamentous ascomycetes plant-pathogen Botrytis cinerea using PCR with multiple degenerate primers designed on specific and conserved sequence motifs. Eight distinct chs genes were isolated, named Bcchs I, II, IIIa, IIIb, IV, V, VI and VII. They probably constitute the entire chs multigenic family of this fungus, as revealed by careful analysis of six euascomycetes genomes.

View Article and Find Full Text PDF

Galectins form a family of structurally related carbohydrate binding proteins (lectins) that have been identified in a large variety of metazoan phyla. They are involved in many biological processes such as morphogenesis, control of cell death, immunological response, and cancer. To elucidate the evolutionary history of galectins and galectin-like proteins in chordates, we have exploited three independent lines of evidence: (i) location of galectin encoding genes (LGALS) in the human genome; (ii) exon-intron organization of galectin encoding genes; and (iii) sequence comparison of carbohydrate recognition domains (CRDs) of chordate galectins.

View Article and Find Full Text PDF