Publications by authors named "Isabelle Nelson"

Despite advances in genomic diagnostics, the majority of individuals with rare diseases remain without a confirmed genetic diagnosis. The rapid emergence of advanced omics technologies, such as long-read genome sequencing, optical genome mapping and multiomic profiling, has improved diagnostic yield but also substantially increased analytical and interpretational complexity. Addressing this complexity requires systematic multidisciplinary collaboration, as recently demonstrated by targeted diagnostic workshops.

View Article and Find Full Text PDF

Florida's shallow seagrass beds experience daily diurnal fluctuations in environmental oxygen, leading to hypoxic episodes (PO < 2 mg L, ~6 kPa) that have increased in frequency and intensity in recent decades. The native Gulf toadfish (Opsanus beta) have been shown to employ a suite of adaptive cardiovascular, ventilatory and metabolic adjustments to survive moderate hypoxia, but little is known of the mechanisms used to survive severe hypoxia. The objective of this study was to characterize the acute response of Gulf toadfish to severe hypoxia (<2 kPa).

View Article and Find Full Text PDF

Dystonin (DST) encodes three major isoforms, DST-a, DST-b, and DST-e. Biallelic pathogenic variants in DST have previously been associated with two allelic monogenic disorders: Hereditary Sensory and Autonomic Neuropathy type VI (caused by a loss of DST-a) and Epidermolysis bullosa simplex 3 (caused by a loss of DST-e). We investigated patients diagnosed with congenital myopathy using exome or genome sequencing.

View Article and Find Full Text PDF

Genetic diagnosis of rare diseases requires accurate identification and interpretation of genomic variants. Clinical and molecular scientists from 37 expert centers across Europe created the Solve-Rare Diseases Consortium (Solve-RD) resource, encompassing clinical, pedigree and genomic rare-disease data (94.5% exomes, 5.

View Article and Find Full Text PDF

Background: Titinopathies are caused by mutations in the titin gene (). Titin is the largest known human protein; its gene has the longest coding phase with 364 exons. Titinopathies are very complex neuromuscular pathologies due to the variable age of onset of symptoms, the great diversity of pathological and muscular impairment patterns (cardiac, skeletal muscle or mixed) and both autosomal dominant and recessive modes of transmission.

View Article and Find Full Text PDF

We report three siblings from a non-consanguineous family presenting with contractural limb-girdle phenotype with intrafamilial variability. Muscle MRI showed posterior thigh and quadriceps involvement with a sandwich-like sign. Whole-exome sequencing identified two compound heterozygous missense TTN variants and one heterozygous LAMA2 variant.

View Article and Find Full Text PDF

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence.

View Article and Find Full Text PDF

JAG2 encodes the Notch ligand Jagged2. The conserved Notch signaling pathway contributes to the development and homeostasis of multiple tissues, including skeletal muscle. We studied an international cohort of 23 individuals with genetically unsolved muscular dystrophy from 13 unrelated families.

View Article and Find Full Text PDF
Article Synopsis
  • Marinesco-Sjögren syndrome is a rare disorder caused by mutations in SIL1, characterized by cataracts, myopathy, and ataxia, while similar symptoms are seen in a recently identified disorder related to INPP5K mutations.
  • This research expands knowledge by presenting six new INPP5K patients and demonstrating clinical similarities with Marinesco-Sjögren syndrome, alongside discovering a common protein alteration in both disorders.
  • The study suggests that l-serine could be a potential treatment, showing positive effects on neuronal issues in zebrafish models for both diseases, establishing a shared molecular mechanism across these rare conditions.
View Article and Find Full Text PDF

Objective: To perform genotype-phenotype, clinical and molecular analysis in a large 3-generation family with autosomal dominant congenital spinal muscular atrophy.

Methods: Using a combined genetic approach including whole genome scanning, next generation sequencing-based multigene panel, whole genome sequencing, and targeted variant Sanger sequencing, we studied the proband and multiple affected individuals of this family who presented bilateral proximal lower limb muscle weakness and atrophy.

Results: We identified a novel heterozygous variant, c.

View Article and Find Full Text PDF

Objective: A hitherto undescribed phenotype of early onset muscular dystrophy associated with sensorineural hearing loss and primary ovarian insufficiency was initially identified in 2 siblings and in subsequent patients with a similar constellation of findings. The goal of this study was to understand the genetic and molecular etiology of this condition.

Methods: We applied whole exome sequencing (WES) superimposed on shared haplotype regions to identify the initial biallelic variants in GGPS1 followed by GGPS1 Sanger sequencing or WES in 5 additional families with the same phenotype.

View Article and Find Full Text PDF

Objective: To study the genetic and phenotypic spectrum of patients harboring recessive mutations in .

Methods: We performed whole-exome sequencing in a multicenter cohort of 1929 patients with a suspected hereditary myopathy, showing unexplained limb-girdle muscular weakness and/or elevated creatine kinase levels. Immunohistochemistry and mRNA experiments on patients' skeletal muscle tissue were performed to study the pathogenicity of identified loss-of-function (LOF) variants in .

View Article and Find Full Text PDF

Titin-related myopathies are heterogeneous clinical conditions associated with mutations in TTN. To define their histopathologic boundaries and try to overcome the difficulty in assessing the pathogenic role of TTN variants, we performed a thorough morphological skeletal muscle analysis including light and electron microscopy in 23 patients with different clinical phenotypes presenting pathogenic autosomal dominant or autosomal recessive (AR) mutations located in different TTN domains. We identified a consistent pattern characterized by diverse defects in oxidative staining with prominent nuclear internalization in congenital phenotypes (AR-CM) (n = 10), ± necrotic/regenerative fibers, associated with endomysial fibrosis and rimmed vacuoles (RVs) in AR early-onset Emery-Dreifuss-like (AR-ED) (n = 4) and AR adult-onset distal myopathies (n = 4), and cytoplasmic bodies (CBs) as predominant finding in hereditary myopathy with early respiratory failure (HMERF) patients (n = 5).

View Article and Find Full Text PDF

We assessed the potential of Lmna-mRNA repair by spliceosome-mediated RNA trans-splicing as a therapeutic approach for LMNA-related congenital muscular dystrophy. This gene therapy strategy leads to reduction of mutated transcript expression for the benefit of corresponding wild-type (WT) transcripts. We developed 5'-RNA pre-trans-splicing molecules containing the first five exons of Lmna and targeting intron 5 of Lmna pre-mRNA.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates the variability of muscle symptoms in patients with mutations in the glycogenin-1 gene, impacting glycogen biosynthesis.
  • Nine patients from five families exhibited muscle biopsies showing abnormal glycogen accumulation, leading to different types of weakness.
  • Genetic testing identified six mutations, including four novel ones, and revealed decreased expression of glycogenin-1, broadening the understanding of glycogenin-1-related muscle disorders.
View Article and Find Full Text PDF

Background: Mutations in the gene coding for protein O-mannosyl-transferase 2 () are known to cause severe congenital muscular dystrophy, and recently, mutations in have also been linked to a milder limb-girdle muscular dystrophy (LGMD) phenotype, named LGMD type 2N (LGMD2N). Only four cases have been reported so far.ClinicalTrials.

View Article and Find Full Text PDF

Background: Emery-Dreifuss muscular dystrophy (EDMD) is associated with mutations in EMD and LMNA genes, encoding for the nuclear envelope proteins emerin and lamin A/C, indicating that EDMD is a nuclear envelope disease. We recently reported mutations in FHL1 gene in X-linked EDMD. FHL1 encodes FHL1A, and the two minor isoforms FHL1B and FHL1C.

View Article and Find Full Text PDF

The neuromuscular junction (NMJ) is one of the best-studied cholinergic synapses. Inherited defects of peripheral neurotransmission result in congenital myasthenic syndromes (CMSs), a clinically and genetically heterogeneous group of rare diseases with fluctuating fatigable muscle weakness as the clinical hallmark. Whole-exome sequencing and Sanger sequencing in six unrelated families identified compound heterozygous and homozygous mutations in SLC5A7 encoding the presynaptic sodium-dependent high-affinity choline transporter 1 (CHT), which is known to be mutated in one dominant form of distal motor neuronopathy (DHMN7A).

View Article and Find Full Text PDF

Objective: To identify the genetic defects present in 3 families with muscular dystrophy, contractures, and calpain 3 deficiency.

Methods: We performed targeted exome sequencing on one patient presenting a deficiency in calpain 3 on Western blot but for which mutations in the gene had been excluded. The identification of a homozygous truncating mutation in the M-line part of titin prompted us to sequence this region in 2 additional patients presenting similar clinical and biochemical characteristics.

View Article and Find Full Text PDF

Background: Laminin α2 deficient congenital muscular dystrophy, caused by mutations in the LAMA2 gene, is characterized by early muscle weakness associated with abnormal white matter signal on cerebral MRI.

Objective: To report on 4 patients with LAMA2 gene mutations whose original clinical features complicated the diagnosis strategy.

Methods: Clinical, electrophysiological, muscle imaging and histopathological data were retrospectively collected from all patients.

View Article and Find Full Text PDF