Publications by authors named "Isabelle Heing-Becker"

Expansion microscopy (ExM) is a recently developed technique that allows for the resolution of structures below the diffraction limit by physically enlarging a hydrogel-embedded facsimile of the biological sample. The target structure is labeled and this label must be retained in a relative position true to the original, smaller state before expansion by linking it into the gel. However, gel formation and digestion lead to a significant loss in target-delivered label, resulting in weak signal.

View Article and Find Full Text PDF

Photodynamic therapy (PDT) is emerging as an efficient strategy to combat multidrug-resistant (MDR) cancer. However, the short half-life and limited diffusion of reactive oxygen species (ROS) undermine the therapeutic outcomes of this therapy. To address this issue, a tumor-targeting nanoplatform was developed to precisely deliver mitochondria- and endoplasmic reticulum (ER)-targeting PDT agents to desired sites for dual organelle-targeted PDT.

View Article and Find Full Text PDF

Multimodal imaging probes have attracted the interest of ongoing research, for example, for the surgical removal of tumors. Modular synthesis approaches allow the construction of hybrid probes consisting of a radiotracer, a fluorophore and a targeting unit. We present the synthesis of a new asymmetric bifunctional cyanine dye that can be used as a structural and functional linker for the construction of such hybrid probes.

View Article and Find Full Text PDF

This study identified and confirmed angiotensin II (ATII) as a strong activator of signaling in neuroendocrine neoplasm (NEN) cells. Expression analyses of the ATII receptor type 1 (AGTR1) revealed an upregulation of mRNA levels (RT-qPCR) and radioligand binding (autoradiography) in small-intestinal ( = 71) NEN tissues compared to controls ( = 25). NEN cells with high AGTR1 expression exhibited concentration-dependent calcium mobilization and chromogranin A secretion upon stimulation with ATII, blocked by AGTR1 antagonism and Gαq inhibition.

View Article and Find Full Text PDF