Publications by authors named "Irina D Grozdova"

Sensitivity and selectivity of aromatic oxalates towards HO are proposed as key criteria for selecting substrates for chemiexcited photodynamic therapy (PDT). An increase in the electronegativity of the oxalate reduces both sensitivity and selectivity. The presence of an -substituent increases the efficiency of aromatic oxalate.

View Article and Find Full Text PDF
Article Synopsis
  • A new method for creating mixed polymer micelles using amorphous poly-D,L-lactide-block-polyethyleneglycol and crystalline amino-terminated poly-L-lactide significantly reduces the preparation time from several days to just 15-20 minutes through ultrasonication.
  • The resulting micelles, approximately 150 nm in size, exhibit low cytotoxicity, high stability in various conditions, and have an average molecular weight of 2.1 × 10 with an aggregation number of 6000.
  • They show potential as drug delivery vehicles, effectively encapsulating the antitumor drug paclitaxel with a lethal concentration similar to that found in commercial formulations.
View Article and Find Full Text PDF

Here we report formation of gold nanoparticles (GNPs) in micelles of polytyrosine-PEG copolymers that combine the properties of a reducer and a stabilizer. The size and properties of the GNPs were tailored by the excess chloroaurate over the copolymer. The latter quickly formed non-covalent complexes with HAuCl4 and then slowly reduced it to form GNPs.

View Article and Find Full Text PDF

We report here the first evidence for the interaction of poly(ethylene glycol) (PEG) with hyaluronan (HA) in aqueous solutions. PEG-HA complexes ( = 45,000 ± 8000 M) contained about 3.3 ± 0.

View Article and Find Full Text PDF

The overproduction of hydrogen peroxide is an inherent feature of some tumour cells and inflamed tissues. We took advantage of this peculiarity to eliminate cells using chemiluminescent peroxyoxalate reaction. We designed dispersions containing polyoxalate and tetramethylhematoporhyrin (TMHP) in dimethylphthalate droplets stabilized with Pluronic L64.

View Article and Find Full Text PDF

The comparison study of interaction of linear poly(2-dimethyl amino)ethyl methacrylate and its cationic nanogels of various cross-linking with both DNA and sodium poly(styrene sulfonate) has been performed. Although all amino groups of the nanogels proved to be susceptible for protonation, their accessibility for ion pairing with the polyanions was controlled and impaired with the cross-linking. The investigation of nanogels complexes with cells in culture that was accomplished by using of calcein pH-sensitive probe revealed a successive increase in the cytoplasmic fluorescence upon the growth in the cross-linking due to calceine leakage from acidic compartments to cytosol.

View Article and Find Full Text PDF

All polymeric chemosensitizers proposed thus far have a linear poly(ethylene glycol) (PEG) hydrophilic block. To testify whether precisely this chemical structure and architecture of the hydrophilic block is a prerequisite for chemosensitization, we tested a series of novel block copolymers containing a hyperbranched polyglycerol segment as a hydrophilic block (PPO-NG copolymers) on multi-drug-resistant (MDR) tumor cells in culture. PPO-NG copolymers inhibited MDR of three cell lines, indicating that the linear PEG can be substituted for a hyperbranched polyglycerol block without loss of the polymers' chemosensitizing activity.

View Article and Find Full Text PDF

Triblock copolymers of ethylene oxide (EO) and propylene oxide (PO) of EO(n/2)PO(m)EO(n/2) type (Pluronics) demonstrate a variety of biological effects that are mainly due to their interaction with cell membranes. Previously, we have shown that Pluronics can bind to artificial lipid membranes and enhance accumulation of the anti-tumor drug doxorubicin (DOX) inside the pH-gradient liposomes and transmembrane migration (flip-flop) of NBD-labeled phosphatidylethanolamine in the liposomes composed from one component-lecithin. Here, we describe the effects caused by insertion of other natural lipids in lecithin liposomes and the significance of the lipid composition for interaction of Pluronic L61 with the membrane.

View Article and Find Full Text PDF