Publications by authors named "Ilaria Mazzonetto"

Intrinsic brain activity is characterized by pervasive long-range temporal correlations. While these scale-invariant dynamics are a fundamental hallmark of brain function, their implications for individual-level metabolic regulation remain poorly understood. Here, we address this gap by integrating resting-state functional Magnetic Resonance Imaging (fMRI) and dynamic [F]FDG Positron Emission Tomography (PET) data acquired from the same cohort of participants.

View Article and Find Full Text PDF

The present study aims to investigate the relationship between cerebellar volumes and cognitive reserve in individuals with Mild Cognitive Impairment (MCI). A description of proxies of cerebellar cognitive reserve in terms of different volumes across lobules is also provided. 36 individuals with MCI underwent neuropsychological (MoCA, MMSE, Clock test, CRIq) assessment and neuroimaging acquisition with magnetic resonance imaging at 3 T.

View Article and Find Full Text PDF

Background And Objective: Magnetic resonance imaging of the brain allows to enrich the study of the relationship between cortical morphology, healthy ageing, diseases and cognition. Since manual segmentation of the cerebral cortex is time consuming and subjective, many software packages have been developed. FreeSurfer (FS) and Advanced Normalization Tools (ANTs) are the most used and allow as inputs a T1-weighted (T1w) image or its combination with a T2-weighted (T2w) image.

View Article and Find Full Text PDF

During visual exploration, eye movements are controlled by multiple stimulus- and goal-driven factors. We recently showed that the dynamics of eye movements -how/when the eye move- during natural scenes' free viewing were similar across individuals and identified two viewing styles: static and dynamic, characterized respectively by longer or shorter fixations. Interestingly, these styles could be revealed at rest, in the absence of any visual stimulus.

View Article and Find Full Text PDF

Functional near infrared spectroscopy and electroencephalography are non-invasive techniques that rely on sensors placed over the scalp. The spatial localization of the measured brain activity requires the precise individuation of sensor positions and, when individual anatomical information is not available, the accurate registration of these sensor positions to a head atlas. Both these issues could be successfully addressed using a photogrammetry-based method.

View Article and Find Full Text PDF

The brain predicts the timing of forthcoming events to optimize processes in response to them. Temporal predictions are driven by both our prior expectations on the likely timing of stimulus occurrence and the information conveyed by the passage of time. Specifically, such predictions can be described in terms of the hazard function, that is, the conditional probability that an event will occur, given it has not yet occurred.

View Article and Find Full Text PDF

Performance on tasks involving cognitive control such as the Stroop task is often associated with left lateralized brain activations. Based on this neuro-functional evidence, we tested whether leftward structural grey matter asymmetries would also predict inter-individual differences in combatting Stroop interference. To check for the specificity of the results, both a verbal Stroop task and a spatial one were administered to a total of 111 healthy young individuals, for whom T1-weighted magnetic resonance imaging (MRI) images were also acquired.

View Article and Find Full Text PDF

The ability to check and evaluate the environment over time with the aim to detect the occurrence of target stimuli is supported by sustained/tonic as well as transient/phasic control processes, which overall might be referred to as event monitoring. The neural underpinning of sustained attentional control processes involves a fronto-parietal network. However, it has not been well-defined yet whether this cortical circuit acts irrespective of the specific material to be monitored and whether this mediates sustained as well as transient monitoring processes.

View Article and Find Full Text PDF

While it is well-established that monitoring the environment for the occurrence of relevant events represents a key executive function, it is still unclear whether such a function is mediated by domain-general or domain-specific mechanisms. We investigated this issue by combining event-related potentials (ERPs) with a behavioral paradigm in which monitoring processes (non-monitoring vs. monitoring) and cognitive domains (spatial vs.

View Article and Find Full Text PDF

Typically, in task-switching contexts individuals are slower and less accurate when repeating a task in mixed blocks compared to single-task blocks (mixing cost) and when switching to a new task compared to repeating a previous one (switch cost). Previous research has shown that distinct electrophysiological correlates underlie these two phenomena. However, this evidence is not a consistent result.

View Article and Find Full Text PDF

The ability to flexibly switch between tasks is a hallmark of cognitive control. Despite previous studies that have investigated whether different task-switching types would be mediated by distinct or overlapping neural mechanisms, no definitive consensus has been reached on this question yet. Here, we aimed at directly addressing this issue by recording the event-related potentials (ERPs) elicited by two types of task-switching occurring in the context of spatial and verbal cognitive domains.

View Article and Find Full Text PDF