Eur J Neurol
January 2025
J Biol Chem
August 2023
Sialylation is a terminal glycosylated modification of glycoproteins that regulates critical biological events such as cell adhesion and immune response. Our previous study showed that integrin α3β1 plays a crucial role in regulating the sialylation of N-glycans. However, the underlying mechanism for the regulation remains unclear.
View Article and Find Full Text PDFCharacterization of O-glycans linked to serine or threonine residues in glycoproteins has mostly been achieved using chemical reaction approaches because there are no known O-glycan-specific endoglycosidases. Most O-glycans are modified with sialic acid residues at the non-reducing termini through various linkages. In this study, we developed a novel approach for sialic acid linkage-specific O-linked glycan analysis through lactone-driven ester-to-amide derivatization combined with non-reductive β-elimination in the presence of hydroxylamine.
View Article and Find Full Text PDFGlycosaminoglycans (GAGs), which are one of the major components of proteoglycans, play a pivotal role in physiological processes such as signal transduction, cell adhesion, growth, and differentiation. Characterization of GAGs is challenging due to the tremendous structural diversity of heteropolysaccharides with numerous sulfate or carboxyl groups. In this present study, we examined the analysis of 2-aminobenzamide (2-AB) labeled GAG disaccharides by high-performance liquid chromatography (HPLC) using a reverse-phase (RP)-column with adamantyl groups.
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) and epiblast-like cells (EpiLCs) recapitulate in vitro the epiblast first cell lineage decision, allowing characterization of the molecular mechanisms underlying pluripotent state transition. Here, we performed a comprehensive and comparative analysis of total glycomes of mouse ESCs and EpiLCs, revealing that overall glycosylation undergoes dramatic changes from early stages of development. Remarkably, we showed for the first time the presence of a developmentally regulated network orchestrating glycosylation changes and identified polycomb repressive complex 2 (PRC2) as a key component involved in this process.
View Article and Find Full Text PDFThe present study demonstrates unidirectional cell migration using a novel 3D microfabricated scaffold, as revealed by the uneven sorting of cells into an area of 1 mm × 1 mm. To induce unidirectional cell migration, it is important to determine the optimal arrangement of 3D edges, and thus, the anisotropic periodic structures of micropatterns are adjusted appropriately. The cells put forth protrusions directionally along the sharp edges of these micropatterns, and migrated in the protruding direction.
View Article and Find Full Text PDFSialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone.
View Article and Find Full Text PDFAnal Chem
November 2019
Sialic acids form the terminal sugars in glycan chains on glycoproteins via α2,3, α2,6, or α2,8 linkages, and structural isomers of sialyl linkages play various functional roles in cell recognition and other physiological processes. We recently developed a novel procedure based on sialic acid linkage-specific alkylamidation via lactone ring opening (aminolysis-SALSA). Herein, we have investigated an isotope labeling of α2,3-linked sialic acid residues (iSALSA) using amine hydrochloride salts.
View Article and Find Full Text PDFIn normal articular cartilage, chondrocytes do not readily proliferate or terminally differentiate, and exhibit a low level of metabolism. Hypertrophy-like changes of chondrocytes have been proposed to play a role in the pathogenesis of osteoarthritis by inducing protease-mediated cartilage degradation and calcification; however, the molecular mechanisms underlying these changes are unclear. Glycans are located on the outermost cell surface.
View Article and Find Full Text PDFManipulating the genetic control of plant height is essential in soybean breeding to increase yield through the enlargement of the plant size while preventing lodging. A Japanese soybean germplasm, Y2, has distinctively shorter inter-node lengths than those of recently developed Japanese cultivars and is expected to provide new variation to prevent lodging. A quantitative trait loci (QTL) analysis for plant height-related traits was conducted using F individuals derived from a cross between the elite Japanese cultivar Fukuyutaka and Y2.
View Article and Find Full Text PDFJ Proteome Res
August 2017
Niemann-Pick disease type C (NPC) is an autosomal recessive lipid storage disorder, and the majority of cases are caused by mutations in the NPC1 gene. In this study, we clarified how a single gene mutation in the NPC1 gene impacts the cellular glycome by analyzing the total glycomic expression profile of Chinese hamster ovary cell mutants defective in the Npc1 gene (Npc1 KO CHO cells). A number of glycomic alterations were identified, including increased expression of lactosylceramide, GM1, GM2, GD1, various neolacto-series glycosphingolipids, and sialyl-T (O-glycan), which was found to be the major sialylated protein-bound glycan, as well as various N-glycans, which were commonly both fucosylated and sialylated.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
April 2018
Here, a new technology was developed to selectively produce areas of high and low surface Young's modulus on biomedical polymer films using micropatterns. First, an elastic polymer film was adhered to a striped micropattern to fabricate a micropattern-supported film. Next, the topography and Young's modulus of the film surface were mapped using atomic force microscopy.
View Article and Find Full Text PDFGlycosphingolipids (GSLs) are lipid molecules linked to carbohydrate units that form the plasma membrane lipid raft, which is clustered with sphingolipids, sterols, and specific proteins, and thereby contributes to membrane physical properties and specific recognition sites for various biological events. These bioactive GSL molecules consequently affect the pathophysiology and pathogenesis of various diseases. Thus, altered expression of GSLs in various diseases may be of importance for disease-related biomarker discovery.
View Article and Find Full Text PDFO-Linked glycosylation of serine/threonine residues is a posttranslational modification of proteins and is essential for protein recognition and lipid functions on cell surfaces and within cells. The characterization of differently structured O-linked glycans (O-glycans) is particularly challenging because there is no known endoglycosidase for such groups. Therefore, chemical digestion approaches have been widely used; however, it is sometimes difficult to suppress unwanted side reactions.
View Article and Find Full Text PDFTo determine how the three-dimensional (3D) shape of scaffolds influences cell functions, 3D micropatterned scaffolds of various sizes were fabricated on a silicon substrate. The micropatterns were equilateral triangular pores with 3-20 μm long sides, and all had the same pore ratio (total pore area per unit area) and depth. The patterns only differed in terms of their 2D size.
View Article and Find Full Text PDFHepatoma-derived growth factor (HDGF) is a secreted heparin-binding growth factor that has been implicated in cancer development and progression. Here, we report that HDGF is a critical target for transcriptional repression by the tumor suppressor p53. Endogenous HDGF expression was decreased in cancer cells with introduction of wild-type p53, which also downregulated HDGF expression after DNA damage.
View Article and Find Full Text PDFTumor suppressor p53 is a transcription factor that induces growth arrest and/or apoptosis in response to cellular stress. In recent years, many genes have been identified as p53-regulated genes; however, no single target gene has been shown to be required for the apoptotic effect. Using microarray analysis, we have identified the transcription factor early growth response 2 (EGR2) as a target of the p53 family, specifically p53, p63 and p73.
View Article and Find Full Text PDF