Publications by authors named "Ignacio Asial"

Article Synopsis
  • The study presents a method to create small, high-affinity proteins (VH domains) for targeting drug interactions inside cells, overcoming challenges of stability and expression.
  • Researchers developed a unique VH domain that can function without disulfide bonds and created a diverse library for effective screening.
  • Identified VH domains showed strong binding to a cancer-related protein, eIF4E, and their intracellular use led to reduced cancer cell growth and malignancy markers.
View Article and Find Full Text PDF

Identifying new binding sites and poses that modify biological function are an important step towards drug discovery. We have identified a novel disulphide constrained peptide that interacts with the cap-binding site of eIF4E, an attractive therapeutic target that is commonly overexpressed in many cancers and plays a significant role in initiating a cancer specific protein synthesis program though binding the 5'cap (7'methyl-guanoisine) moiety found on mammalian mRNAs. The use of disulphide constrained peptides to explore intracellular biological targets is limited by their lack of cell permeability and the instability of the disulphide bond in the reducing environment of the cell, loss of which results in abrogation of binding.

View Article and Find Full Text PDF

Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology.

View Article and Find Full Text PDF

Highly soluble and stable proteins are desirable for many different applications, from basic science to reaching a cancer patient in the form of a biological drug. For X-ray crystallography-where production of a protein crystal might take weeks and even months-a stable protein sample of high purity and concentration can greatly increase the chances of producing a well-diffracting crystal. For a patient receiving a specific protein drug, its safety, efficacy, and even cost are factors affected by its solubility and stability.

View Article and Find Full Text PDF

Protein stability is often a limiting factor in the development of commercial proteins and biopharmaceuticals, as well as for biochemical and structural studies. Unfortunately, identifying stabilizing mutations is not trivial since most are neutral or deleterious. Here we describe a high-throughput colony-based stability screen, which is a direct and biophysical read-out of intrinsic protein stability in contrast to traditional indirect activity-based methods.

View Article and Find Full Text PDF