Publications by authors named "Hyeri Im"

Alzheimer's disease (AD) is a representative neurodegenerative disease that is characterized by the overaccumulation of amyloid beta (Aβ) proteins. Since AD is accompanied by excessive oxidative stress, which aggravates neurological pathologies, the use of antioxidants has been considered to prevent disease development. NXP031, a combination of vitamin C (VitC) and an optimized aptamer that binds to VitC and stabilizes the reactivity of VitC, was designed.

View Article and Find Full Text PDF

Alzheimer's disease (AD) presents a growing societal challenge, driven by an aging population. It is characterized by neurodegeneration linked to β-amyloid (Aβ) and tau protein aggregation. Reactive glial cell-mediated neuroinflammation exacerbates disease progression by facilitating the accumulation of Aβ and impairing its clearance, thus highlighting potential therapeutic targets.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD), the most common form of dementia, is characterized by memory loss and the abnormal accumulation of senile plaques composed of amyloid-β (Aβ) protein. Trichosanthis Semen (TS) is a traditional herbal medicine used to treat phlegm-related conditions. While TS is recognized for various bioactivities, including anti-neuroinflammatory effects, its ability to attenuate AD remains unknown.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most common dementia characterized by the excessive accumulation of amyloid-beta (Aβ) and tau aggregates, as well as neuronal damage and neuroinflammation. Metabolic disruption in AD has been noticed because metabolite alterations closely correlate with Aβ neuropathology and behavioral phenotypes. Accordingly, controlling various neuropathological processes and metabolic disruption is an efficient therapeutic strategy for AD treatment.

View Article and Find Full Text PDF

Neuroinflammation, a key pathological contributor to various neurodegenerative diseases, is mediated by microglial activation and subsequent secretion of inflammatory cytokines via the mitogen-activated protein kinase (MAPK) signaling pathway. Moreover, neuroinflammation leads to synaptic loss and memory impairment. This study investigated the inhibitory effects of PNP001, a mixture of Trichosanthis Semen and Zingiberis Rhizoma in a ratio of 3:1, on neuroinflammation and neurological deficits induced by lipopolysaccharide (LPS).

View Article and Find Full Text PDF