The middle temporal (MT) area of the extrastriate visual cortex has long been studied in adulthood for its distinctive physiological properties and function as a part of the dorsal stream, yet interestingly it possesses a similar maturation profile as the primary visual cortex (V1). Here, we examined whether an early-life lesion in MT of marmoset monkeys (six female, two male) altered the dorsal stream development and the behavioral precision of reaching-to-grasp sequences. We observed permanent changes in the anatomy of cortices associated with both reaching (parietal and medial intraparietal areas) and grasping (anterior intraparietal area), as well as in reaching-and-grasping behaviors.
View Article and Find Full Text PDFNeural Regen Res
September 2021
The physiological characteristics of the marmoset second visual area (V2) are poorly understood compared with those of the primary visual area (V1). In this study, we observed the physiological response characteristics of V2 neurons in four healthy adult marmosets using intracortical tungsten microelectrodes. We recorded 110 neurons in area V2, with receptive fields located between 8° and 15° eccentricity.
View Article and Find Full Text PDFJ Neurophysiol
January 2021
The marmoset monkey () has gained attention in neurophysiology research as a new primate model for visual processing and behavior. In particular, marmosets have a lissencephalic cortex, making multielectrode, optogenetic, and calcium-imaging techniques more accessible than other primate models. However, the degree of homology of brain circuits for visual behavior with those identified in macaques and humans is still being ascertained.
View Article and Find Full Text PDFAdjacent neurons in visual cortex have overlapping receptive fields within and across area boundaries, an arrangement theorized to minimize wiring cost. This constraint is traditionally thought to create retinotopic maps of opposing field signs (mirror and nonmirror visual field representations) in adjacent areas, a concept that has become central in current attempts to subdivide the extrastriate cortex. We simulated the formation of retinotopic maps using a model that balances constraints imposed by smoothness in the representation within an area and by congruence between areas.
View Article and Find Full Text PDFPurpose: To evaluate the accuracy at which visual field global indices could be estimated from OCT scans of the retina using deep neural networks and to quantify the contributions to the estimates by the macula (MAC) and the optic nerve head (ONH).
Design: Observational cohort study.
Participants: A total of 10 370 eyes from 109 healthy patients, 697 glaucoma suspects, and 872 patients with glaucoma over multiple visits (median = 3).
The boundaries of the visual areas located anterior to V2 in the dorsomedial region of the macaque cortex remain contentious. This region is usually conceptualized as including two functional subdivisions: the dorsal component of area V3 (V3d) laterally and another area named the parietooccipital area (PO) or V6 medially. However, the nature of the putative border between V3d and PO/V6 has remained undefined.
View Article and Find Full Text PDFLesions of striate cortex (V1) trigger massive retrograde degeneration of neurons in the LGN. In primates, these lesions also lead to scotomas, within which conscious vision is abolished. Mediation of residual visual capacity within these regions (blindsight) has been traditionally attributed to an indirect visual pathway to the extrastriate cortex, which involves the superior colliculus and pulvinar complex.
View Article and Find Full Text PDFSensory perception depends on neuronal populations creating an accurate representation of the external world. The amount of information that a population can represent depends on the tuning of individual neurons and the trial-by-trial variability shared among neurons. Although on average, pairwise spike-count correlations between neurons are positive, the distribution is wide, and the relationship between correlations and encoding is not straightforward.
View Article and Find Full Text PDFNeuronal loss in the lateral geniculate nucleus (LGN) is a consequence of lesions of the primary visual cortex (V1). Despite the importance of this phenomenon in understanding the residual capacities of the primate visual system following V1 damage, few quantitative studies are available, and the effect of age at the time of lesion remains unknown. We compared the volume, neuronal number, and neuronal density in the LGN, 6-21 months after unilateral V1 lesions in marmoset monkeys.
View Article and Find Full Text PDFDespite the importance of transition metals for normal brain function, relatively little is known about the distribution of these elemental species across the different tissue compartments of the primate brain. In this study, we employed laser ablation-inductively coupled plasma-mass spectrometry on PFA-fixed brain sections obtained from two adult common marmosets. Concurrent cytoarchitectonic, myeloarchitectonic, and chemoarchitectonic measurements allowed for identification of the major neocortical, archaecortical, and subcortical divisions of the brain, and precise localisation of iron, manganese, and zinc concentrations within each division.
View Article and Find Full Text PDFThe marmoset is an emerging animal model for large-scale attempts to understand primate brain connectivity, but achieving this aim requires the development and validation of procedures for normalization and integration of results from many neuroanatomical experiments. Here we describe a computational pipeline for coregistration of retrograde tracing data on connections of cortical areas into a 3D marmoset brain template, generated from Nissl-stained sections. The procedure results in a series of spatial transformations that are applied to the coordinates of labeled neurons in the different cases, bringing them into common stereotaxic space.
View Article and Find Full Text PDFUnlabelled: Each visual experience changes the neural response to subsequent stimuli. If the brain is unable to incorporate these encoding changes, the decoding, or perception, of subsequent stimuli is biased. Although the phenomenon of adaptation pervades the nervous system, its effects have been studied mainly in isolation, based on neuronal encoding changes induced by an isolated, prolonged stimulus.
View Article and Find Full Text PDFThe ability to estimate the speed of an object irrespective of size or texture is a crucial function of the visual system. However, previous studies have suggested that the neuronal coding of speed in the middle temporal area (MT, a key cortical area for motion analysis in primates) is ambiguous, with most neurons changing their speed tuning depending on the spatial frequency (SF) of a visual pattern. Here we demonstrate that the ability of MT neurons to encode speed is markedly improved when stimuli follow a trajectory across the visual field, prior to entering their receptive fields.
View Article and Find Full Text PDFWe studied the afferent connections of two cytoarchitectural subdivisions of the caudolateral frontal cortex, areas 6Va and 8C, in marmoset monkeys. These areas received connections from the same set of thalamic nuclei, including main inputs from the ventral lateral and ventral anterior complexes, but differed in their patterns of corticocortical connections. Areas 8C and 6Va had reciprocal interconnections, and received similar proportions of afferents from premotor areas 6M and 6DC, and from the prefrontal cortex.
View Article and Find Full Text PDFAlthough the primary visual cortex (V1) is one of the most extensively studied areas of the primate brain, very little is known about how the far periphery of visual space is represented in this area. We characterized the physiological response properties of V1 neurons in anaesthetized marmoset monkeys, using high-contrast drifting gratings. Comparisons were made between cells with receptive fields located in three regions of V1, defined by eccentricity: central (3-5°), near peripheral (5-15°), and far peripheral (>50°).
View Article and Find Full Text PDFThe layout of areas in the cerebral cortex of different primates is quite similar, despite significant variations in brain size. However, it is clear that larger brains are not simply scaled up versions of smaller brains: some regions of the cortex are disproportionately large in larger species. It is currently debated whether these expanded areas arise through natural selection pressures for increased cognitive capacity or as a result of the application of a common developmental sequence on different scales.
View Article and Find Full Text PDFLesions of striate cortex [primary visual cortex (V1)] in adult primates result in blindness. In contrast, V1 lesions in neonates typically allow much greater preservation of vision, including, in many human patients, conscious perception. It is presently unknown how this marked functional difference is related to physiological changes in cortical areas that are spared by the lesions.
View Article and Find Full Text PDFThe primary visual area (V1) forms a systematic map of the visual field, in which adjacent cell clusters represent adjacent points of visual space. A precise quantification of this map is key to understanding the anatomical relationships between neurons located in different stations of the visual pathway, as well as the neural bases of visual performance in different regions of the visual field. We used computational methods to quantify the visual topography of V1 in the marmoset (Callithrix jacchus), a small diurnal monkey.
View Article and Find Full Text PDFContemporary studies recognize 3 distinct cytoarchitectural and functional areas within the Brodmann area 8 complex, in the caudal prefrontal cortex: 8b, 8aD, and 8aV. Here, we report on the quantitative characteristics of the cortical projections to these areas, using injections of fluorescent tracers in marmoset monkeys. Area 8b was distinct from both 8aD and 8aV due to its connections with medial prefrontal, anterior cingulate, superior temporal polysensory, and ventral midline/retrosplenial areas.
View Article and Find Full Text PDFIn primates, prostriata is a small area located between the primary visual cortex (V1) and the hippocampal formation. Prostriata sends connections to multisensory and high-order association areas in the temporal, parietal, cingulate, orbitofrontal, and frontopolar cortices. It is characterized by a relatively simple histological organization, alluding to an early origin in mammalian evolution.
View Article and Find Full Text PDFModern neurophysiological and psychophysical studies of vision are typically based on computer-generated stimuli presented on flat screens. While this approach allows precise delivery of stimuli, it suffers from a fundamental limitation in terms of the maximum achievable spatial coverage. This constraint becomes important in studies that require stimulation of large expanses of the visual field, such as those involving the mapping of receptive fields throughout the extent of a cortical area or subcortical nucleus, or those comparing neural response properties across a wide range of eccentricities.
View Article and Find Full Text PDFWe used fluorescent tracers to map the pattern of cortical afferents to frontal area 10 in marmosets. Dense projections originated in several subdivisions of orbitofrontal cortex, in the medial frontal cortex (particularly areas 14 and 32), and in the dorsolateral frontal cortex (particularly areas 8Ad and 9). Major projections also stemmed, in variable proportions depending on location of the injection site, from both the inferior and superior temporal sensory association areas, suggesting a degree of audiovisual convergence.
View Article and Find Full Text PDFIn light of anatomical evidence suggesting differential connection patterns in central vs. peripheral representations of cortical areas, we investigated the extent to which the response properties of cells in the primary visual area (V1) of the marmoset change as a function of eccentricity. Responses to combinations of the spatial and temporal frequencies of visual stimuli were quantified for neurons with receptive fields ranging from 3 degrees to 70 degrees eccentricity.
View Article and Find Full Text PDFThe dorsomedial area (DM), a subdivision of extrastriate cortex characterized by heavy myelination and relative emphasis on peripheral vision, remains the least understood of the main targets of striate cortex (V1) projections in primates. Here we placed retrograde tracer injections encompassing the full extent of this area in marmoset monkeys, and performed quantitative analyses of the numerical strengths and laminar patterns of its afferent connections. We found that feedforward projections from V1 and from the second visual area (V2) account for over half of the inputs to DM, and that the vast majority of the remaining connections come from other topographically organized visual cortices.
View Article and Find Full Text PDF