Collagen peptide (COP) is water soluble, bioactive, and tends to be a promising alternative to collagen for tissue regeneration. However, its low viscosity and lack of readily polymerizable groups hinder its bioprinting and limit its wide applications in tissue engineering. In this study, methacrylated collagen peptide-xanthan gum (COPMA-XG) bioinks with interpenetrating networks are developed for bioprinting stable constructs, followed by stem cell differentiation.
View Article and Find Full Text PDFThe major drawback of conventional chemotherapeutic treatment is the non-specificity or inability to ascertain and target cancerous cells directly. In this study, an active targeting strategy that is poised to carry the anticancer agents to the desired sites for therapeutic action while avoiding toxicity to normal organs is provided. The active targeting of delivery vehicles is achieved by ligand-receptor interactions, in particular the specific binding between hyaluronic acid oligosaccharides (oHAs) and CD44 receptors.
View Article and Find Full Text PDFThe current use of synthetic grafts often yields low patency in the reconstruction of small-diameter blood vessels owing to the deposition of thrombi and imperfect coverage of the endothelium on the graft lumen. Therefore, the design of vascular scaffolds with antithrombotic performance and endothelialization is greatly required. Herein, we developed an enzyme-laden scaffold based on hyaluronic acid oligosaccharides-modified collagen nanofibers (labeled HA-COL) to improve the anti-platelet capacity and endothelialization of vascular grafts.
View Article and Find Full Text PDFCarbohydr Polym
October 2022
It is a challenge to develop hemostatic and wound dressings that are used for irregular shape and deep wound. Herein, a series of novel N-succinyl chitosan-oxidized hyaluronic acid based (NSC-OHA-based) hydrogels were fabricated, while calcium ions (Ca) and/or four-armed amine-terminated poly(ethylene glycol) (4-arm-PEG-NH, labeled as PEG1) were introduced to regulate the mechanical behavior and bioactivities. We found all NSC-OHA-based hydrogels displayed self-healing and injectable performances.
View Article and Find Full Text PDFIn this study, we prepared a biomimetic hyaluronic acid oligosaccharides (oHAs)-based composite scaffold to develop a bone tissue-engineered scaffold for stimulating osteogenesis and endothelialization. The functional oHAs products were firstly synthesized, namely collagen/hyaluronic acid oligosaccharides/hydroxyapatite (Col/oHAs/HAP), chitosan/hyaluronic acid oligosaccharides (CTS/oHAs), and then uniformly distributed in poly (lactic-co-glycolic acid) (PLGA) solution followed by freeze-drying to obtain three-dimensional interconnected scaffolds as temporary templates for bone regeneration. The morphology, physicochemical properties, compressive strength, and degradation behavior of the fabricated scaffolds, as well as in vitro cell responses seeded on these scaffolds and in vivo biocompatibility, were investigated to evaluate the potential for bone tissue engineering.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
May 2020
Considering the structural complexity of the native artery wall and the limitations of current treatment strategies, developing a biomimetic tri-layer tissue-engineered vascular graft is a major developmental direction of vascular tissue regeneration. Biodegradable polymers exhibit adequate mechanical characteristics and feasible operability, showing potential prospects in the construction of tissue engineering scaffold. Herein, we present a bio-inspired tri-layer tubular graft using biodegradable polymers to simulate natural vascular architecture.
View Article and Find Full Text PDF