Poly(ADP-ribose) polymerase (PARP) is involved in DNA repair and chromatin regulation. 5-Aza-2'-deoxycytidine (5-aza-dC) inhibits DNA methyltransferases, induces hypomethylation, blocks DNA replication, and causes DNA single strand breaks (SSBs). As the PARP inhibitor is expected to affect both DNA repair and transcriptional regulations, we investigated the effect of combinational use of PARP inhibitors on cytotoxicity of 5-aza-dC in human cancer cell lines.
View Article and Find Full Text PDFBackground: During fertilization, pronuclear envelope breakdown (PNEB) is followed by the mingling of male and female genomes. Dynamic chromatin and protein rearrangements require posttranslational modification (PTM) for the postfertilization development.
Methodology/principal Findings: Inhibition of poly(ADP-ribose) polymerase activity (PARylation) by either PJ-34 or 5-AIQ resulted in developmental arrest of fertilized embryos at the PNEB.
Cancer Genet Cytogenet
February 2010
The poly(ADP-ribose) polymerase-1 protein (PARP-1) functions in DNA repair, maintenance of genomic stability, induction of cell death, and transcriptional regulation. We previously analyzed alterations of the PARP1 gene in 16 specimens of human germ cell tumors, and found a heterozygous sequence alteration that causes the amino acid substitution Met129Thr (M129T) in both tumor and normal tissues in a single patient. In this study, aberration of the PARP1 gene and protein was further analyzed in human germ cell tumor cell lines.
View Article and Find Full Text PDFPoly(ADP-ribose) polymerase-1 knockout (Parp-1(-/-)) mice show increased frequency of spontaneous liver tumors compared to wild-type mice after aging. To understand the impact of Parp-1 deficiency on mutations during aging, in this study, we analyzed spontaneous mutations in Parp-1(-/-) aged mice. Parp-1(-/-) mice showed tendencies of higher mutation frequencies of the red/gam genes at 18 months of age, compared to Parp-1(+/+) mice, in the liver and brain.
View Article and Find Full Text PDFBone and soft tissue sarcomas (BSTSs) are rare malignant tumors of mesenchymal origin. Although BSTSs frequently occur in some hereditary cancer syndromes with germline mutations of DNA repair genes, genetic factors responsible for sporadic cases have not been determined. In the present study we undertook a case-control study and analyzed possible associations between the susceptibility to BSTS and the single nucleotide polymorphisms (SNPs) in DNA repair genes.
View Article and Find Full Text PDFBackground: Many lines of evidence suggest that poly(ADP-ribose) polymerase-1 (Parp-1) is involved in transcriptional regulation of various genes as a coactivator or a corepressor by modulating chromatin structure. However, the impact of Parp-1-deficiency on the regulation of genome-wide gene expression has not been fully studied yet.
Results: We employed a microarray analysis covering 12,488 genes and ESTs using mouse Parp-1-deficient (Parp-1-/-) embryonic stem (ES) cell lines and the livers of Parp-1-/- mice and their wild-type (Parp-1+/+) counterparts.
5-Bromodeoxyuridine (BrdU) induces a phenomenon similar to cellular senescence in mammalian cells. To address an underlying molecular mechanism in this phenomenon, we assessed the role of AT-hook proteins that bind to the minor grooves of specific AT-rich sequences. We expressed DsRed-tagged HMGI, MATH2, and MATH20 proteins in HeLa cells in a doxycycline dependent manner.
View Article and Find Full Text PDFJ Biochem
December 2002
5-Bromodeoxyuridine (BrdU) immediately and clearly suppresses expression of the mouse Myod1 and human MYOD1 genes in myoblastic cells. Despite various studies, its molecular mechanism remains unknown. We failed to identify a BrdU-responsive element of the genes in experiments in which reporter constructs containing known regulatory sequences were transferred to mouse C2C12 myoblasts.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
April 2002
5-Bromodeoxyuridine induces a senescence-like phenomenon in mammalian cells. This effect was dramatically potentiated by AT-binding ligands such as distamycin A, netropsin, and Hoechst 33258. The genes most remarkably affected by these ligands include the widely used senescence-associated genes and were located on or nearby Giemsa-dark bands of human chromosomes.
View Article and Find Full Text PDFSubstitution of thymine with 5-bromouracil in DNA is known to change interaction between DNA and proteins, thereby inducing various biological phenomena. We hypothesize that A/T-rich scaffold/nuclear matrix attachment region (S/MAR) sequences are involved in the effects of 5-bromodeoxyuridine. We examined an interaction between DNA containing an intronic S/MAR sequence of the immunoglobulin heavy chain gene and nuclear halos prepared from HeLa cells.
View Article and Find Full Text PDF