The real-time and selective detection of dopamine (DA) in complex biological systems remains a critical challenge due to its low physiological concentrations and interference from structurally similar biomolecules such as ascorbic acid and uric acid. Traditional analytical techniques often fall short in terms of specificity, cost-effectiveness, and ease of deployment in biological matrices. To address this gap, we developed a highly selective fluorescent nanosensor based on bentonite-supported Cu-based bimetallic nanoparticles (B/nZVCu-Ni/Ag), synthesized via a green route using Lawsonia inermis extract.
View Article and Find Full Text PDFThis work focuses on the synthesis of Bentonite supported nano zero valent bimetallic nanoparticles (B/nZVCu-M NPs) to be utilized for fast and highly sensitive, reversible, fluorescent determination of dopamine (DA) in the presence of dopamine, other biomolecules and ions. The X-ray Photoelectron Spectroscopy(XPS), Powder X-Ray Diffraction(PXRD) and Scanning Electron Microscopy(SEM) revealed the formation of nanoparticles with size ranging from 15 to 20 nm. The composition was revealed by Fourier Transform Infrared(FTIR) Spectoscopy and Energy Dispersive X-Ray (EDX) Analysis.
View Article and Find Full Text PDF