Tumors often recapitulate programs to acquire invasive and dissemination abilities, during which pro-metastatic proteins are distinctively stabilized in cancer cells to drive further progression. Whether failed protein degradation affects the metastatic programs of cancer remains unknown. Here, we show that the human cancer cell-specific knockout (KO) of LAMP-2A, a limiting protein for chaperone-mediated autophagy (CMA), promotes the aggressiveness of mesenchymal tumors.
View Article and Find Full Text PDFThe ubiquitin-specific peptidase 39 (USP39) belongs to the USP family of cysteine proteases representing the largest group of human deubiquitinases (DUBs). While the oncogenic function of USP39 has been investigated in various cancer types, its roles in non-small cell lung cancer (NSCLC) remain largely unknown. Here, by applying a gene set enrichment analysis (GSEA) on lung adenocarcinoma tissues and metabolite set enrichment analysis (MSEA) on NSCLC cells depleted of USP39, we identified a previously unknown link between USP39 and the metabolism in NSCLC cells.
View Article and Find Full Text PDFMetabolic rewiring has been recognized as a hallmark of malignant transformation, supplying the biosynthetic and energetic demands for rapid cancer cell proliferation and tumor progression. A comprehensive understanding of the regulatory mechanisms governing these metabolic processes is still limited. Here, we identify the deubiquitinase ubiquitin-specific peptidase 9 X-linked (USP9x) as a positive regulator of the proline biosynthesis pathway in non-small cell lung cancer (NSCLC).
View Article and Find Full Text PDFNutrients
June 2024
Taurine, a non-proteogenic amino acid and commonly used nutritional supplement, can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We found that OC ascites-derived cells contained significantly more intracellular taurine than cell culture-modeled OC.
View Article and Find Full Text PDFLAMP2A is the rate-limiting factor of chaperone-mediated autophagy (CMA), a unique selective protein degradative pathway. To date LAMP2A antibodies are not knockout (KO)-validated in human cells. We have recently generated human isoform-specific LAMP2A KO cells, and here we assessed the specificity of select commercial LAMP2A antibodies on wild-type and LAMP2A KO human cancer cells.
View Article and Find Full Text PDFbioRxiv
May 2024
Taurine, a non-proteogenic amino acid, and commonly used nutritional supplement can protect various tissues from degeneration associated with the action of the DNA-damaging chemotherapeutic agent cisplatin. Whether and how taurine protects human ovarian cancer (OC) cells from DNA damage caused by cisplatin is not well understood. We have found that OC ascites-derived cells contained significantly more intracellular taurine than cell cultures modeling OC.
View Article and Find Full Text PDFChaperone-mediated autophagy (CMA) is a highly specific lysosomal-dependent protein degradation pathway. A critical molecular component of CMA is the lysosome-associated membrane protein (LAMP) type 2A, which is required for substrate uptake by the lysosome. Defects in the CMA pathway have been associated with various human pathologies, including malignancies, increasing the overall interest in methods to monitor this selective autophagy process.
View Article and Find Full Text PDFAccurate isolation of functional and intact lysosomes enables the quantification and analyses of abundances, dynamic changes and enrichment levels of lysosomal content, allowing specific lysosomal investigations induced by autophagy. In this protocol chapter, we describe detailed practical instructions and advices for an efficacious lysosomal enrichment and isolation procedure by differential multilayered density gradient centrifugations using human cancer cell lines. By this method, intact and autophagy competent lysosomes can be isolated from cancer cells based on their distinct density and obtained fractions can further be analyzed for functional lysosomal assays, as well as for protein or metabolic loads to identify select spatiotemporal changes by comparative quantitative measurement.
View Article and Find Full Text PDFOne of the most notoriously altered genes in human cancer is the tumor-suppressor , which is mutated with high frequency in more cancers than any other tumor suppressor gene. Beyond the loss of wild-type p53 functions, mutations in the gene often lead to the expression of full-length proteins with new malignant properties. Among the defined oncogenic functions of mutant p53 is its effect on cell metabolism and autophagy.
View Article and Find Full Text PDFAutophagic pathways are regulated mechanisms that play important roles in lysosome-mediated cellular degradation. Yet, the contribution of different autophagic pathways in lysosomal targeting, and characterization of the extent and specificity in their degradome remains largely uncharacterized. By undertaking a multiplex quantitative mass spectrometry approach, we have previously analyzed the lysosomal proteome during chaperone-mediated autophagy (CMA)-stimulated conditions in cancer cells.
View Article and Find Full Text PDFCell Death Differ
March 2021
Cancer cells undergo complex metabolic alterations. The mechanisms underlying the tuning of cancer metabolism are under active investigation. Here, we identify the uncharacterized deubiquitinase JOSD2 as a positive regulator of cancer cell proliferation by displaying comprehensive effects on glucose catabolism.
View Article and Find Full Text PDFBackground: Deubiquitinating enzymes (DUBs) are linked to cancer progression and dissemination, yet less is known about their regulation and impact on epithelial-mesenchymal transition (EMT).
Methods: An integrative translational approach combining systematic computational analyses of The Cancer Genome Atlas cancer cohorts with CRISPR genetics, biochemistry and immunohistochemistry methodologies to identify and assess the role of human DUBs in EMT.
Results: We identify a previously undiscovered biological function of STAM-binding protein like 1 (STAMBPL1) deubiquitinase in the EMT process in lung and breast carcinomas.
Autophagy
September 2019
Chaperone-mediated autophagy (CMA) is a lysosomal degradation pathway of select soluble proteins. Nearly one-third of the soluble proteins are predicted to be recognized by this pathway, yet only a minor fraction of this proteome has been identified as CMA substrates in cancer cells. Here, we undertook a quantitative multiplex mass spectrometry approach to study the proteome of isolated lysosomes in cancer cells during CMA-activated conditions.
View Article and Find Full Text PDFBiochem Biophys Res Commun
April 2019
Lung cancer causes the highest number of cancer-related deaths worldwide. Resistance to therapy is a major clinical issue contributing to the poor prognosis of lung cancer. In recent years, targeted therapy has become a concept where subgroups of non-small cell lung cancer (NSCLC) with genetically altered receptor tyrosine kinases are targeted by tyrosine kinase inhibitors (TKIs).
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2018
Epithelial-to-mesenchymal transition (EMT) is a fundamental mechanism governing the switch of cells from an epithelial to a motile mesenchymal-like state. This transdifferentiation is regulated by key transcription factors, including Slug. The stability and function of Slug can be regulated by multiple mechanisms, including ubiquitin-mediated post-translational modifications.
View Article and Find Full Text PDFBiochem Biophys Res Commun
May 2018
Malate Dehydrogenase (MDH) 1 has recently been shown to be highly expressed and display prognostic value in non-small cell lung carcinomas (NSCLCs). However, it is not known how MDH1 expression is regulated and there is no current molecular or chemical strategy that specifically targets MDH1. This may be due to structural and enzymatic similarities with its isoenzyme, malate dehydrogenase 2 (MDH2).
View Article and Find Full Text PDFThe advent of targeted therapies generated much optimism when discovered. Targeted therapies, are however associated with rapid acquisition of resistance. In a recent study by Dong .
View Article and Find Full Text PDFis one of the most commonly mutated genes in human cancers. Unlike other tumor suppressors that are frequently deleted or acquire loss-of-function mutations, the majority of mutations in tumors are missense substitutions, which lead to the expression of full-length mutant proteins that accumulate in cancer cells and may confer unique gain-of-function (GOF) activities to promote tumorigenic events. Recently, mutant p53 proteins have been shown to mediate metabolic changes as a novel GOF to promote tumor development.
View Article and Find Full Text PDFCellular compartmentalization of biochemical processes in eukaryotic cells is critical for many functions including shuttling of reducing equivalents across membranes. Although coordination of metabolic flux between different organelles is vital for cell physiology, its impact on tumor cell survival is not well understood. By using an integrative approach, we have dissected the role of the key metabolic enzymes Malate dehydrogenases (MDH1 and MDH2) to the survival of Non-small Cell Lung Carcinomas.
View Article and Find Full Text PDFMolecular signatures are emerging determinants of choice of therapy for lung adenocarcinomas. An evolving therapeutic approach includes targeting metabolic dependencies in cancers. Here, using an integrative approach, we have dissected the metabolic fingerprints of lung adenocarcinomas, and we show that Phosphoglycerate dehydrogenase (PHGDH), the rate-limiting enzyme in serine biosynthesis, is highly expressed in a adenocarcinoma subset with poor prognosis.
View Article and Find Full Text PDFMitochondria are complex organelles that play a central role in energy metabolism, control of stress responses and are a hub for biosynthetic processes. Beyond its well-established role in cellular energetics, mitochondria are critical mediators of signals to propagate various cellular outcomes. In addition mitochondria are the primary source of intracellular reactive oxygen species (ROS) generation and are involved in cellular Ca homeostasis, they contain a self-destructive arsenal of apoptogenic factors that can be unleashed to promote cell death, thus displaying a shared platform for metabolism and apoptosis.
View Article and Find Full Text PDFIn the above-mentioned article, it has come to the authors' attention that, during the preparation of Figure 5C and Supplemental Figure S2C for the final version of this article, the authors unintentionally assembled incorrect tubulin immunoblots due to similarities in the markings or names, such as FLT3 versus FT, between two similar experiments. The amended versions of these figures are shown below. Neither the quantitative determinations nor the conclusions of this article are altered.
View Article and Find Full Text PDF