Publications by authors named "Hassan Hashemzadeh"

Saffron is a rich collection of bioactive components including safranal, crocins, crocetin, essential oils, picrocrocins, etc. The extraction method plays a significant role in obtaining these bioactive compounds. Efficacious extraction of bioactive components must meet the green chemistry requirements for environment-friendly, safety, little impurities, economic, and efficiency.

View Article and Find Full Text PDF

Background And Aims: Retinitis pigmentosa (RP) is a hereditary retinal disorder that gradually leads to vision loss due to photoreceptor cell degeneration. This study aims to investigate the clinical features and genetic underpinnings of RP within a large Iranian family. Our focus centered on mutations in the NR2E3 gene, which plays a critical role in the development and maintenance of the retina.

View Article and Find Full Text PDF

Introduction: During the last decade, there has been a significant rise in the use of therapeutic antibodies or passive immunotherapy for treating various conditions like inflammation and cancer. However, these proteins face challenges reaching the brain and often require specialized delivery methods such as single-domain antibodies (sdAbs). Traditional antibodies struggle to efficiently cross the blood-brain barrier (BBB), hindering their effectiveness.

View Article and Find Full Text PDF

Due to the increasing demand for electrochemical energy storage, rechargeable lithium-ion batteries (LIBs) are gaining more and more attention. However, much research still needs to be conducted to enhance their cycling and storage capacity. Recently, computational studies have provided valuable information for LIB development, which is very difficult and expensive to obtain experimentally.

View Article and Find Full Text PDF

Prodrug and drug delivery systems are two effective strategies for improving the selectivity of chemotherapeutics. Herein, via molecular dynamics (MD) simulation and free energy calculation, the effectiveness of the graphene oxide (GO) decorated with the pH-sensitive prodrug (PD) molecules in cancer therapy is investigated. PEI-CA-DOX (prodrug) was loaded onto the GO surface, in which the hydrogen bonding and pi-pi stacking interactions play the main role in the stability of the GO-PD complex.

View Article and Find Full Text PDF

Although nature is a rich source of potential drugs and drug leads, the widespread application of natural products (NPs) is limited due to their poor absorption when administered orally. A strategy of using phytosome has emerged as a promising technique to increase the bioavailability of NPs. Here, a comprehensive computational investigation is performed to explore the nature of interactions in the formation of phytosomes between phosphatidylcholine (PC) and a series of polyphenols (PP), including epigallocatechin-3-gallate (Eg), luteolin (Lu), quercetin (Qu), and resveratrol (Re).

View Article and Find Full Text PDF

Although vaccines have been significantly successful against coronavirus, due to the high rate of the Omicron variant spread many researchers are trying to find efficient drugs against COVID-19. Herein, we conducted a computational study to investigate the binding mechanism of four potential inhibitors (including disulfide derivatives isolated from Ferula foetida) to SARS-CoV-2 main protease. Our findings revealed that the disulfides mainly interacted with HIS41, MET49, CYS145, HIS64, MET165, and GLN189 residues of SARS-CoV-2 main protease.

View Article and Find Full Text PDF

Polymeric nanoparticles have emerged as efficient carriers for anticancer drug delivery because they can improve the solubility of hydrophobic drugs and also can increase the bio-distribution of drugs throughout the bloodstream. In this work, a computational study is performed on a set of new pH-sensitive polymer-drug compounds based on an intelligent polymer called poly(β-malic acid) (PMLA). The molecular dynamics (MD) simulation is used to explore the adsorption and dynamic properties of PMLA-doxorubicin (PMLA-DOX) interaction with the graphene oxide (GOX) surface in acidic and neutral environments.

View Article and Find Full Text PDF

Polyhistidine is among the cell-penetrating peptides that in an acidic environment can facilitate membrane transition. Keeping in mind that the pH of the tumor intercellular medium is ∼5.5, in this paper, we examined the functionalization of a convenient drug delivery vehicle with cell-penetrating poly(l-histidine) to provide a smart drug delivery system.

View Article and Find Full Text PDF

A novel strategy was described to fabricate hematite-MOF materials with morphologies (core-shell) and (composite) as an efficient peroxymonosulfate (PMS) activator for degrading ciprofloxacin (CIP) antibiotics. First, α-FeO nanoparticles (NPs) with a size distribution range of 80 nm were prepared by surfactant-assisted reflux method. Then, cobalt-based metal-organic framework (ZIF-67) was grown onto the α-FeO NPs with ultrasonic and solvothermal method, which can control the nanostructures morphology.

View Article and Find Full Text PDF

The development of drug delivery systems (DDSs) has raised hopes for targeted cancer therapy. Smart polymers can be conjugated with several nanoparticles and increase their efficiency in biomedical applications. In this work, the classical molecular dynamics and well-tempered metadynamics simulations are performed to study the behavior of black phosphorus (BPH) nanosheet functionalized with polyethylenimine (PEI) in adsorption, diffusion, and release of doxorubicin (DOX) anticancer drug.

View Article and Find Full Text PDF

Due to the extreme pore volume and valuable surface area, zeolitic imidazole frameworks (ZIFs) are promising vehicles that enhance the delivery of therapeutic agents to tissues. Furthermore, these nanoporous materials have high stability in the pH and temperature of the surrounding healthy cells (37 °C and pH = 7) and an exotic potential to deform in carcinogenic environment ( > 37 °C and pH ∼ 5.5), which make them perfect smart drug delivery vehicle candidates.

View Article and Find Full Text PDF

Graphene-amino acid interaction is gaining significance mainly based on its possible biomedicine applications. The density functional theory (DFT) calculation and molecular dynamics simulation (MD) are applied to obtain a comprehensive understanding of the adsorption mechanism of three kinds of amino acids, namely, alanine (Ala), glycine (Gly), and valine (Val) over the surface of graphene and functionalized graphene nanosheets. In this study, several analyses such as solvation energy, adsorption energy, intermolecular distances, and charge properties are used to explore the adsorption behavior of amino acid on the nanosheets.

View Article and Find Full Text PDF

The objective of this study is to develop a controlled and water-soluble delivery system for doxorubicin (DOX) based on the coating of graphene (G) with a smart polymer. A combination of polyethyleneimine (PEI) and G-DOX is investigated by performing density functional theory (DFT) calculations and molecular dynamics (MD) simulations. Several parameters have been employed to evaluate the effect of PEI on the adsorption and release mechanisms of DOX.

View Article and Find Full Text PDF

Dual delivery of Doxorubicin (DOX) and Paclitaxel (PTX) anticancer drug molecules with boron nitride (BN) and phosphorene (PH) nanosheets are investigated using molecular dynamics (MD) simulation. Several quantities are employed to examine the adsorption mechanism of DOX and PTX on the carriers. The obtained results indicate that the drug molecules spontaneously move toward the carriers and form stable complexes.

View Article and Find Full Text PDF

The adsorption behavior of Anastrozole (ANA) and Melphalan (MEL) anticancer drugs on the surface of silicene nanosheet (SNS) and functionalized SNS with folic acid (FA-SNS) is investigated and compared using the density functional theory (DFT) and molecular dynamics (MD) simulation. The DFT calculation is performed at the M06-2X/6-31G** level to characterize the optimized geometry properties of the designed complexes. The calculated adsorption energies are in the range from -65.

View Article and Find Full Text PDF

The stability of Gemcitabine (Gem) anticancer drug on the hexagonal boron nitride (h-BN) and functionalized h-BN with polyethylene glycol (PEG-h-BN) as drug delivery carriers (DDSs) is investigated. The density functional theory (DFT) calculations, molecular dynamics (MD) simulation and Metadynamics simulations are used to study the nature of h-BN-Gem interactions as well as the role of PEG group to increase the efficiency of the DDS. The results of DFT calculations reveal that the drug physisorbed on the h-BN surface through the formation of π-π stacking with an adsorption energy range -15.

View Article and Find Full Text PDF

The surface modification ability is one of the remarkable characters of graphene (G) nanosheet. Based on this strategy, G surface is modified with folic acid (FA) to improve the targeting delivery of chemotherapy agents. The dual delivery strategy for the transport of doxorubicin (DOX) and camptothecin (CPT) by using G and folic acid functionalized G nanocarriers is examined.

View Article and Find Full Text PDF

The present study focuses on the prediction and investigation of binding properties of penicillamine with pure (5,5) single-walled carbon nanotube (SWCNT) and functionalized SWCNT (-SWCNT) through the B3LYP and M06-2X functionals using the 6-31G** basis set. The electronic and structural properties, adsorption energy and frontier molecular orbitals of various configurations are examined. Our theoretical results indicated that the interaction of the nanotubes with penicillamine molecule is weak so that the drug adsorption process is typically physisorption.

View Article and Find Full Text PDF

The aim of this study was to determine the correlation between PM and NO pollutants and oxidative stress marker (8-isoprostane) and lung function tests (FVC and FEV) in healthy children who were living and studying in three different areas of Ahvaz city including A: Naderi site with high traffic, A: Alavi Alley site with average traffic, and A: Ein 2 site with low traffic (a rural area on the suburb of Ahvaz). 30 students in the 12-13 year-old range were selected from each studied zone (1, 2 and 3 sites) during three months of year. Of each student, one sample was taken every two weeks to measure 8-isoprostane of exhaled breath condensate (EBC).

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) are widely used in drug delivery systems (DDSs) due to their unique chemical and physical properties. Investigation of interactions between biomolecules and CNTs is an interesting and important subject in biological applications. In this study, we used molecular dynamics (MD) simulation to investigate the adsorption mechanism of the anticancer drug paclitaxel (PTX) on pristine and functionalized CNTs (f-CNT) in aqueous solutions.

View Article and Find Full Text PDF