Background: T cells form one of the key pillars of adaptive immunity. Using their surface bound T cell antigen receptors (TCRs), these cells screen millions of antigens presented by major histocompatibility complex (MHC) or MHC-like molecules. In other protein families, the dynamics of protein-protein interactions have important implications for protein function.
View Article and Find Full Text PDFThe success of checkpoint inhibitors (CPIs) for cancer has been tempered by immune-related adverse effects including colitis. CPI-induced colitis is hallmarked by expansion of resident mucosal IFNγ cytotoxic CD8 T cells, but how these arise is unclear. Here, we track CPI-bound T cells in intestinal tissue using multimodal single-cell and subcellular spatial transcriptomics (ST).
View Article and Find Full Text PDFT cells are essential immune cells responsible for identifying and eliminating pathogens. Through interactions between their T-cell antigen receptors (TCRs) and antigens presented by major histocompatibility complex molecules (MHCs) or MHC-like molecules, T cells discriminate foreign and self peptides. Determining the fundamental principles that govern these interactions has important implications in numerous medical contexts.
View Article and Find Full Text PDFImmunoinformatics (Amst)
March 2024
The vast potential sequence diversity of TCRs and their ligands has presented an historic barrier to computational prediction of TCR epitope specificity, a holy grail of quantitative immunology. One common approach is to cluster sequences together, on the assumption that similar receptors bind similar epitopes. Here, we provide the first independent evaluation of widely used clustering algorithms for TCR specificity inference, observing some variability in predictive performance between models, and marked differences in scalability.
View Article and Find Full Text PDFBackground: T-cells play a crucial role in the adaptive immune system by triggering responses against cancer cells and pathogens, while maintaining tolerance against self-antigens, which has sparked interest in the development of various T-cell-focused immunotherapies. However, the identification of antigens recognised by T-cells is low-throughput and laborious. To overcome some of these limitations, computational methods for predicting CD8 + T-cell epitopes have emerged.
View Article and Find Full Text PDFGroup A (GAS) infection is associated with multiple clinical sequelae, including different subtypes of psoriasis. Such post-streptococcal disorders have been long known but are largely unexplained. CD1a is expressed at constitutively high levels by Langerhans cells and presents lipid antigens to T cells, but the potential relevance to GAS infection has not been studied.
View Article and Find Full Text PDFT cell recognition of SARS-CoV-2 antigens after vaccination and/or natural infection has played a central role in resolving SARS-CoV-2 infections and generating adaptive immune memory. However, the clinical impact of SARS-CoV-2-specific T cell responses is variable and the mechanisms underlying T cell interaction with target antigens are not fully understood. This is especially true given the virus' rapid evolution, which leads to new variants with immune escape capacity.
View Article and Find Full Text PDFNat Rev Immunol
August 2023
Recent advances in machine learning and experimental biology have offered breakthrough solutions to problems such as protein structure prediction that were long thought to be intractable. However, despite the pivotal role of the T cell receptor (TCR) in orchestrating cellular immunity in health and disease, computational reconstruction of a reliable map from a TCR to its cognate antigens remains a holy grail of systems immunology. Current data sets are limited to a negligible fraction of the universe of possible TCR-ligand pairs, and performance of state-of-the-art predictive models wanes when applied beyond these known binders.
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) genes are the most polymorphic loci in the human genome and code for proteins that play a key role in guiding adaptive immune responses by presenting foreign and self peptides (ligands) to T cells. Each person carries up to 6 HLA class I variants (maternal and paternal copies of HLA-A, HLA-B and HLA-C genes) and also multiple HLA class II variants, which cumulatively define the landscape of peptides presented to T cells. Each HLA variant has its own repertoire of presented peptides with a certain sequence motif which is mainly defined by peptide anchor residues (typically the second and the last positions for HLA class I ligands) forming key interactions with the peptide-binding groove of HLA.
View Article and Find Full Text PDFT cell recognition of a cognate peptide-major histocompatibility complex (pMHC) presented on the surface of infected or malignant cells is of the utmost importance for mediating robust and long-term immune responses. Accurate predictions of cognate pMHC targets for T cell receptors would greatly facilitate identification of vaccine targets for both pathogenic diseases and personalized cancer immunotherapies. Predicting immunogenic peptides therefore has been at the center of intensive research for the past decades but has proven challenging.
View Article and Find Full Text PDFBackground: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults. Despite maximal treatment, median survival remains dismal at 14-24 months. Immunotherapies, such as checkpoint inhibition, have revolutionized management of some cancers but have little benefit for GBM patients.
View Article and Find Full Text PDFThe conditions and extent of cross-protective immunity between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and common-cold human coronaviruses (HCoVs) remain open despite several reports of pre-existing T cell immunity to SARS-CoV-2 in individuals without prior exposure. Using a pool of functionally evaluated SARS-CoV-2 peptides, we report a map of 126 immunogenic peptides with high similarity to 285 MHC-presented peptides from at least one HCoV. Employing this map of SARS-CoV-2-non-homologous and homologous immunogenic peptides, we observe several immunogenic peptides with high similarity to human proteins, some of which have been reported to have elevated expression in severe COVID-19 patients.
View Article and Find Full Text PDFSalmonella enterica represent a major disease burden worldwide. S. enterica serovar Typhi (S.
View Article and Find Full Text PDFImmune dysregulation is commonly observed in patients with coronavirus disease 2019 (COVID-19). Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces severe lung inflammation and innate immune cell dysregulation. However, the precise interaction between SARS-CoV-2 and the innate immune system is currently unknown.
View Article and Find Full Text PDFDepleting the microenvironment of important nutrients such as arginine is a key strategy for immune evasion by cancer cells. Many tumors overexpress arginase, but it is unclear how these cancers, but not T cells, tolerate arginine depletion. In this study, we show that tumor cells synthesize arginine from citrulline by upregulating argininosuccinate synthetase 1 (ASS1).
View Article and Find Full Text PDFHuman leukocyte antigen (HLA) is highly polymorphic and plays a key role in guiding adaptive immune responses by presenting foreign and self peptides to T cells. Each HLA variant selects a minor fraction of peptides that match a certain motif required for optimal interaction with the peptide-binding groove. These restriction rules define the landscape of peptides presented to T cells.
View Article and Find Full Text PDFWhile individuals infected with coronavirus disease 2019 (COVID-19) manifested a broad range in susceptibility and severity to the disease, the pre-existing immune memory to related pathogens cross-reactive against SARS-CoV-2 can influence the disease outcome in COVID-19. Here, we investigated the potential extent of T cell cross-reactivity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that can be conferred by other coronaviruses and influenza virus, and generated an map of public and private CD8+ T cell epitopes between coronaviruses. We observed 794 predicted SARS-CoV-2 epitopes of which 52% were private and 48% were public.
View Article and Find Full Text PDFAdaptive immune recognition is mediated by specific interactions between heterodimeric T cell receptors (TCRs) and their cognate peptide-MHC (pMHC) ligands, and the methods to accurately predict TCR:pMHC interaction would have profound clinical, therapeutic and pharmaceutical applications. Herein, we review recent developments in predicting cross-reactivity and antigen specificity of TCR recognition. We discuss current experimental and computational approaches to investigate cross-reactivity and antigen-specificity of TCRs and highlight how integrating kinetic, biophysical and structural features may offer valuable insights in modeling immunogenicity.
View Article and Find Full Text PDFNat Med
September 2020
Colonic antigen-experienced lymphocytes such as tissue-resident memory CD8 T cells can respond rapidly to repeated antigen exposure. However, their cellular phenotypes and the mechanisms by which they drive immune regulation and inflammation remain unclear. Here we compiled an unbiased atlas of human colonic CD8 T cells in health and ulcerative colitis (UC) using single-cell transcriptomics with T-cell receptor repertoire analysis and mass cytometry.
View Article and Find Full Text PDFThe newly identified coronavirus known as 2019-nCoV has posed a serious global health threat. According to the latest report (18-February-2020), it has infected more than 72,000 people globally and led to deaths of more than 1,016 people in China. The 2019 novel coronavirus proteome was aligned to a curated database of viral immunogenic peptides.
View Article and Find Full Text PDFHuman lymphopoiesis is a dynamic lifelong process that starts in utero 6 weeks postconception. Although fetal B-lymphopoiesis remains poorly defined, it is key to understanding leukemia initiation in early life. Here, we provide a comprehensive analysis of the human fetal B-cell developmental hierarchy.
View Article and Find Full Text PDFThe colonic epithelium facilitates host-microorganism interactions to control mucosal immunity, coordinate nutrient recycling and form a mucus barrier. Breakdown of the epithelial barrier underpins inflammatory bowel disease (IBD). However, the specific contributions of each epithelial-cell subtype to this process are unknown.
View Article and Find Full Text PDF