J Colloid Interface Sci
January 2025
Layered double hydroxide (LDH) serves as an innovative catalyst for water electrolysis, showcasing outstanding performance in the oxygen evolution reaction (OER) under alkaline conditions. However, it faces challenges due to its low electrical conductivity and limited accessibility to active sites. In this work, the flexibility advantages of disordered amorphous and ordered crystals in NiFe LDH were combined to improve OER performance and maintain long-term stability.
View Article and Find Full Text PDFOne dimensional spinel CoFeO nanofibers were synthesized the electrospinning technique. The nanofibers were calcined at different temperatures. All CoFeO nanofibers show excellent oxygen evolution reaction (OER) performance.
View Article and Find Full Text PDFPhys Chem Chem Phys
March 2012
Nanoparticles of superconducting YBa(2)Cu(3)O(7-δ) were synthesized via a citrate pyrolysis technique. Room temperature ferromagnetism was revealed in the samples by a vibrating sample magnetometer. Electron spin resonance spectra at selected temperatures indicated that there is a transition from the normal to the superconducting state at temperatures below 100 K.
View Article and Find Full Text PDFZr doped ZnO nanoparticles are prepared by the sol-gel method with post-annealing. X-ray diffraction results show that all samples are the typical hexagonal wurtzite structure without any other new phase, as well as the Zr atoms have successfully entered into the ZnO lattices instead of forming other lattices. Magnetic measurements indicate that all the doping samples show room temperature ferromagnetism and the pure ZnO is paramagneism.
View Article and Find Full Text PDFNanoscale Res Lett
May 2010
Preferred oriented ZnFe2O4 nanowire arrays with an average diameter of 16 nm were fabricated by post-annealing of ZnFe2 nanowires within anodic aluminum oxide templates in atmosphere. Selected area electron diffraction and X-ray diffraction exhibit that the nanowires are in cubic spinel-type structure with a [110] preferred crystallite orientation. Magnetic measurement indicates that the as-prepared ZnFe2O4 nanowire arrays reveal uniaxial magnetic anisotropy, and the easy magnetization direction is parallel to the axis of nanowire.
View Article and Find Full Text PDF