Emerging SARS-CoV-2 variants continue to cause waves of new infections globally. Developing effective antivirals against SARS-CoV-2 and its variants is an urgent task. The main protease (M) of SARS-CoV-2 is an attractive drug target because of its central role in viral replication and its conservation among variants.
View Article and Find Full Text PDFScience
March 2021
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continually poses serious threats to global public health. The main protease (M) of SARS-CoV-2 plays a central role in viral replication. We designed and synthesized 32 new bicycloproline-containing M inhibitors derived from either boceprevir or telaprevir, both of which are approved antivirals.
View Article and Find Full Text PDFAutophagy inducers represent new promising agents for the treatment of a wide range of medical illnesses. However, safe autophagy inducers for clinical applications are lacking. Inhibition of cdc2-like kinase 1 (CLK1) was recently found to efficiently induce autophagy.
View Article and Find Full Text PDFTwo metabolites, cis-BP4, 5-dihydrodiol and cis-BP7, 8-dihydrodiol, were identified by high-performance liquid chromatography (HPLC) during the degradation of BaP by Bacillus-07 (BA-07). The two metabolites were hardly further metabolized for their toxicity to microorganism. To promote degradation of BaP and decrease accumulation of cis-BP4, 5-dihydrodiol and cis-BP7, 8-dihydrodiol, two methods (degradation only by BA-07, degradation by coupling the BA-07 and KMnO4) were compared.
View Article and Find Full Text PDF