Environ Sci Technol
August 2025
Atmospheric brown carbon (BrC) from wildfires is a key component of light-absorbing carbon that significantly contributes to global radiative forcing, but its atmospheric evolution and lifetime remain poorly understood. In this study, we investigate BrC evolution by synthesizing data from one laboratory campaign and four aircraft campaigns spanning diverse spatial scales across North America. To estimate initial conditions for evaluating plume evolution, we develop a method to parametrize the emission ratios of BrC and other species using commonly measured inert tracers, acetonitrile and hydrogen cyanide.
View Article and Find Full Text PDFEnviron Sci Technol
November 2023
Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2023
The hydroxyl radical (OH) fuels atmospheric chemical cycling as the main sink for methane and a driver of the formation and loss of many air pollutants, but direct OH observations are sparse. We develop and evaluate an observation-based proxy for short-term, spatial variations in OH (Proxy) in the remote marine troposphere using comprehensive measurements from the NASA Atmospheric Tomography (ATom) airborne campaign. Proxy is a reduced form of the OH steady-state equation representing the dominant OH production and loss pathways in the remote marine troposphere, according to box model simulations of OH constrained with ATom observations.
View Article and Find Full Text PDFCarbonaceous emissions from wildfires are a dynamic mixture of gases and particles that have important impacts on air quality and climate. Emissions that feed atmospheric models are estimated using burned area and fire radiative power (FRP) methods that rely on satellite products. These approaches show wide variability and have large uncertainties, and their accuracy is challenging to evaluate due to limited aircraft and ground measurements.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2021
Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors.
View Article and Find Full Text PDFWildfires are a substantial but poorly quantified source of tropospheric ozone (O). Here, to investigate the highly variable O chemistry in wildfire plumes, we exploit the in situ chemical characterization of western wildfires during the FIREX-AQ flight campaign and show that O production can be predicted as a function of experimentally constrained OH exposure, volatile organic compound (VOC) reactivity, and the fate of peroxy radicals. The O chemistry exhibits rapid transition in chemical regimes.
View Article and Find Full Text PDFEnviron Sci Technol
December 2021
Oceans emit large quantities of dimethyl sulfide (DMS) to the marine atmosphere. The oxidation of DMS leads to the formation and growth of cloud condensation nuclei (CCN) with consequent effects on Earth's radiation balance and climate. The quantitative assessment of the impact of DMS emissions on CCN concentrations necessitates a detailed description of the oxidation of DMS in the presence of existing aerosol particles and clouds.
View Article and Find Full Text PDFIEEE J Sel Top Appl Earth Obs Remote Sens
February 2021
The fire influence on regional to global environments and air quality (FIREX-AQ) field campaign was conducted during August 2019 to investigate the impact of wildfire and biomass smoke on air quality and weather in the continental United States. One of the campaign's scientific objectives was to estimate the composition of emissions from wildfires. Ultraspectrally resolved infrared radiance measurements from aircraft and/or satellite observations contain information on tropospheric carbon monoxide (CO) as well as other trace species present in fire emissions.
View Article and Find Full Text PDFNitrous oxide (NO) is a long-lived greenhouse gas that also destroys stratospheric ozone. NO emissions are uncertain and characterized by high spatiotemporal variability, making individual observations difficult to upscale, especially in mixed land use source regions like the San Joaquin Valley (SJV) of California. Here, we calculate spatially integrated NO emission rates using nocturnal and convective boundary-layer budgeting methods.
View Article and Find Full Text PDFAtmos Chem Phys
July 2020
Proc Natl Acad Sci U S A
March 2021
Atmos Chem Phys
December 2020
Houston, Texas is a major U.S. urban and industrial area where poor air quality is unevenly distributed and a disproportionate share is located in low-income, non-white, and Hispanic neighborhoods.
View Article and Find Full Text PDFThis study evaluates the impact of assimilating soil moisture data from NASA's Soil Moisture Active Passive (SMAP) on short-term regional weather and air quality modeling in East Asia during the Korea-US Air Quality Study (KORUS-AQ) airborne campaign. SMAP data are assimilated into the Noah land surface model using an ensemble Kalman filter approach in the Land Information System framework, which is semi-coupled with the NASA-Unified Weather Research and Forecasting model with online chemistry (NUWRF-Chem). With SMAP assimilation included, water vapor and carbon monoxide (CO) transport from northern-central China transitional climate zones to South Korea is better represented in NUWRF-Chem during two studied pollution events.
View Article and Find Full Text PDFModeled source attribution information from the Community Multiscale Air Quality model was coupled with ambient data from the 2011 Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality Baltimore field study. We assess source contributions and evaluate the utility of using aircraft measured CO and NO relationships to constrain emission inventories. We derive ambient and modeled ΔCO:ΔNO ratios that have previously been interpreted to represent CO:NO ratios in emissions from local sources.
View Article and Find Full Text PDFThe vertical distribution of relative humidity with respect to ice (RHI) in the Boreal wintertime Tropical Tropopause Layer (TTL, ≃14-18 km) over the Pacific is examined with the extensive dataset of measurements from the NASA Airborne Tropical TRopopause EXperiment (ATTREX). Multiple deployments of the Global Hawk during ATTREX provided hundreds of vertical profiles spanning the longitudinal extent of the Pacific with accurate measurements of temperature, pressure, water vapor concentration, ozone concentration, and cloud properties. We also compare the measured RHI distributions with results from a transport and microphysical model driven by meteorological analysis fields.
View Article and Find Full Text PDFMuch progress has been made in creating satellite products for tracking the pollutants ozone and NO in the troposphere. Yet, in mid-latitude regions where meteorological interactions with pollutants are complex, accuracy can be difficult to achieve, largely due to persistent layering of some constituents. We characterize the layering of ozone soundings and related species measured from aircraft over two ground sites in suburban Washington, DC (Beltsville, MD, 39.
View Article and Find Full Text PDFWe use historical and new atmospheric trace gas observations to refine the estimated source of methane (CH(4)) emitted into California's South Coast Air Basin (the larger Los Angeles metropolitan region). Referenced to the California Air Resources Board (CARB) CO emissions inventory, total CH(4) emissions are 0.44 ± 0.
View Article and Find Full Text PDFEnviron Sci Technol
February 2009
We use recent aircraft measurements of a comprehensive suite of anthropogenic halocarbons, carbon monoxide (CO), and related tracers to place new constraints on North American halocarbon emissions and quantify their global warming potential. Using a chemical transport model (GEOS-Chem) we find that the ensemble of observations are consistent with our prior best estimate of the U.S.
View Article and Find Full Text PDF