Publications by authors named "Giuseppina Minopoli"

The "amyloid cascade hypothesis" for Alzheimer's disease (AD) pathogenesis, highlights the accumulation of amyloid-β (Aβ) as a crucial trigger for the pathology. However, AD is an extremely complex disease influenced by multiple pathophysiological processes, making it impossible to attribute its onset to a single hypothesis. The endocytic pathway, where the amyloidogenic processing of APP occurs, has emerged as a pathogenic "hub" for AD.

View Article and Find Full Text PDF

This work reports the production of biocompatible thin layers for biomedical applications based on a graphene-like material (GL), a graphene-related material (GRM) obtained from carbon black. GL was combined in a hybrid fashion with polydopamine (pDA), a mussel-inspired water-resistant wet adhesive bonding obtained by the oxidative polymerization of dopamine (DA), and polyvinyl pyrrolidinone (PVP), a nontoxic synthetic polymer with intrinsic adhesion properties, to obtain a tighter adhesion of the thin layer to the substrate (silicone slices). Matrix-assisted pulsed laser evaporation (MAPLE) was used to coat PDMS slices with thin films of GL-pDA and GL-PVP directly from their frozen suspensions in water.

View Article and Find Full Text PDF

In this study, matrix-assisted pulsed laser evaporation (MAPLE) was used to deposit graphene-like materials (GL), a new class of biocompatible graphene-related materials (GRMs) obtained from a controlled top-down demolition of a carbon black, on silicone slices to test their potential use as functional coating on invasive medical devices as indwelling urinary catheters. Results indicate that the relevant chemical-physical features of the deposit (controlled by FTIR and AFM) were maintained after MAPLE deposition. After deposition, GL films underwent a biological survey toward target cellular lines (murine fibroblast NIH3T3, human keratinocytes HaCAT and the human cervical adenocarcinoma epithelial-like HeLa).

View Article and Find Full Text PDF

Cell senescence is critical in diverse aspects of organism life. It is involved in tissue development and homeostasis, as well as in tumor suppression. Consequently, it is tightly integrated with basic physiological processes during life.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a fatal neurodegenerative disorder caused by protein misfolding and aggregation, affecting brain function and causing dementia. Amyloid beta (Aβ), a peptide deriving from amyloid precursor protein (APP) cleavage by-and γ-secretases, is considered a pathological hallmark of AD. Our previous study, together with several lines of evidence, identified a strict link between APP, Aβ and 37/67kDa laminin receptor (LR), finding the possibility to regulate intracellular APP localization and maturation through modulation of the receptor.

View Article and Find Full Text PDF

A common metabolic condition for living organisms is starvation/fasting, a state that could play systemic-beneficial roles. Complex adaptive responses are activated during fasting to help the organism to maintain energy homeostasis and avoid nutrient stress. Metabolic rearrangements during fasting cause mild oxidative stress in skeletal muscle.

View Article and Find Full Text PDF

Amyloid precursor protein (APP) is processed along both the nonamyloidogenic pathway preventing amyloid beta peptide (Aβ) production and the amyloidogenic pathway, generating Aβ, whose accumulation characterizes Alzheimer's disease. Items of evidence report that the intracellular trafficking plays a key role in the generation of Aβ and that the 37/67 kDa LR (laminin receptor), acting as a receptor for Aβ, may mediate Aβ-pathogenicity. Moreover, findings indicating interaction between the receptor and the key enzymes involved in the amyloidogenic pathway suggest a strong link between 37/67 kDa LR and APP processing.

View Article and Find Full Text PDF

and are the genes most frequently associated with hereditary breast and ovarian cancer (HBOC). They are crucial for the maintenance of genome stability, particularly in the homologous recombination-mediated repair pathway of DNA double-strand breaks (HR-DSBR). Widespread next-generation sequencing (NGS) screening has revealed numerous variants of uncertain significance.

View Article and Find Full Text PDF

There is a growing interest in therapeutically targeting the inflammatory response that underlies age-related chronic diseases including obesity and type 2 diabetes. Through integrative small RNA sequencing, we show the presence of conserved plant miR159a and miR156c in dried nuts having high complementarity with the mammalian TNF receptor superfamily member 1a (Tnfrsf1a) transcript. We detected both miR159a and miR156c in exosome-like nut nanovesicles (NVs) and demonstrated that such NVs reduce Tnfrsf1a protein and dampen TNF-α signaling pathway in adipocytes.

View Article and Find Full Text PDF

Gastrokine 1 (GKN1) is highly expressed in gastric tissue and is secreted into the stomach but is not expressed in gastric cancer. GKN1 belongs to the BRICHOS domain family and plays a major role in maintaining gastric mucosa integrity. We previously demonstrated that a recombinant human GKN1 protein was able to interact with the amyloid precursor protein (APP) and was endowed with an anti-amyloidogenic property because it inhibited polymerization of the Aβ(1-40) peptide released from APP upon its partial hydrolysis.

View Article and Find Full Text PDF

Previous findings describe Fe65 as a key protein in the cellular response to genotoxic stress. However, the precise molecular mechanism by which Fe65 contributes to DNA damage signaling remains unclear. In this study, we hypothesized that the transcriptional activity of Fe65 may contribute to DNA damage pathways by regulating gene expression patterns activated in response to genotoxic stress.

View Article and Find Full Text PDF

Carbonic anhydrase IX (CA IX) is a surrogate marker of hypoxia, involved in survival and pH regulation in hypoxic cells. We have recently characterized its interactome, describing a set of proteins interacting with CA IX, mainly in hypoxic cells, including several members of the nucleocytoplasmic shuttling apparatuses. Accordingly, we described complex subcellular localization for this enzyme in human cells, as well as the redistribution of a carbonic anhydrase IX pool to nucleoli during hypoxia.

View Article and Find Full Text PDF

Gastrokine 1 (GKN1) is a stomach-specific protein expressed in normal gastric tissue but absent in gastric cancer. GKN1 plays a major role in maintaining gastric mucosa integrity and is characterized by the presence of a BRICHOS domain consisting of about 100 amino acids also found in several unrelated proteins associated with major human diseases like BRI2, related to familial British and Danish dementia and surfactant protein C (SP-C), associated with respiratory distress syndrome. It was reported that recombinant BRICHOS domains from BRI2 and SP-C precursor (proSP-C) prevent fibrils formation of amyloid-beta peptide (Aβ), that is the major component of extracellular amyloid deposits in Alzheimer's disease.

View Article and Find Full Text PDF

Over the past few years, it has become evident that the distinctive pattern of miRNA expression seen in embryonic stem cells (ESCs) contributes to important signals in the choice of the cell fate. Thus, the identification of miRNAs and their targets, whose expression is linked to a specific step of differentiation, as well as the modulation of these miRNAs, may prove useful in the learning of how ESC potential is regulated. In this context, we have studied the expression profile of miRNAs during neural differentiation of ESCs.

View Article and Find Full Text PDF

The discovery that the main constituents of amyloid deposits, characteristic of Alzheimer neuropathology, derive from the proteolytic processing of the membrane precursor amyloid precursor protein (APP) is one of the milestones of the research history of this disease. Despite years of intense studies, the functions of APP and of its amyloidogenic processing are still under debate. One focus of these studies was the complex network of protein-protein interactions centered at the cytosolic domain of APP, which suggests the involvement of APP in a lively signaling pathway.

View Article and Find Full Text PDF

The serine/threonine kinase GSK-3β was initially described as a key enzyme involved in glucose metabolism, but it is now known to regulate a wide range of biological processes, including proliferation and apoptosis. We previously reported a transformation-dependent cell death induced by glucose limitation in K-ras-transformed NIH3T3. To address the mechanism of this phenomenon, we analyzed GSK-3β regulation in these cells in conditions of high versus low glucose availability.

View Article and Find Full Text PDF

The β-amyloid peptide is generated by the proteolysis of the amyloid precursor protein (APP) by the action of β- and γ-secretase. The mechanisms underlying this process are poorly understood. Using a cell-based reporter gene assay we analysed the possible signals and pathways that could be involved in APP cleavage.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) play an important role in proper function and differentiation of mouse embryonic stem cells (ESCs). We performed a systematic comparison of miRNA expression in undifferentiated vs. differentiating ESCs.

View Article and Find Full Text PDF

Fe65 is a binding partner of the Alzheimer's beta-amyloid precursor protein APP. The possible involvement of this protein in the cellular response to DNA damage was suggested by the observation that Fe65 null mice are more sensitive to genotoxic stress than WT counterpart. Fe65 associated with chromatin under basal conditions and its involvement in DNA damage repair requires this association.

View Article and Find Full Text PDF

Notch proteins are definitely recognized as key regulators of the neuronal fate during embryo development, but their function in the adult brain is still largely unknown. We have previously demonstrated that Notch pathway stimulation increases microtubules stability followed by the remodeling of neuronal morphology with neurite varicosities loss, thicker neuritis, and enlarged growth cones. Here we show that the neurite remodeling is a dynamic event, dependent on transcription and translation, and with functional implications.

View Article and Find Full Text PDF

The Alzheimer's beta-amyloid peptides derive from the proteolytic processing of the beta-amyloid precursor protein, APP, by beta- and gamma-secretases. The regulation of this processing is not fully understood. Experimental evidence suggests that the activation of pathways involving protein tyrosine kinases, such as PDGFR and Src, could induce the cleavage of APP and in turn the generation of amyloid peptides.

View Article and Find Full Text PDF

APP is a type I membrane protein of unknown function, whose proteolytic processing, driven by beta- and gamma-secretases, generates the beta-amyloid peptides, one of the hallmarks of the pathogenesis of Alzheimer's disease. The short cytosolic domain of APP is the center of a complex network of protein-protein interactions. This network appears to play a crucial role in the regulation of the APP processing and in turn in the generation of the amyloid peptides, thus suggesting candidate targets for new therapeutic approaches.

View Article and Find Full Text PDF

Fe65 interacts with the cytosolic domain of the Alzheimer amyloid precursor protein (APP). The functions of the Fe65 are still unknown. To address this point we generated Fe65 knockout (KO) mice.

View Article and Find Full Text PDF

Wip1, the wild-type p53-induced phosphatase, selectively dephosphorylates a threonine residue on p38 MAPK and mediates a negative feedback loop of the p38 MAPK-p53 signaling pathway. To identify the substrate specificity of Wip1, we prepared a recombinant human Wip1 catalytic domain (rWip1) and measured kinetic parameters for phosphopeptides containing the dephosphorylation sites in p38alpha and in a new substrate, UNG2. rWip1 showed properties that were comparable to those of PP2Calpha or full-length Wip1 in terms of affinity for Mg(2+), insensitivity to okadaic acid, and threonine dephosphorylation.

View Article and Find Full Text PDF

The beta-amyloid precursor protein APP and the microtubule-associated protein Tau play a crucial role in the pathogenesis of Alzheimer's disease (AD). However, the possible molecular events linking these two proteins are still unknown. Here, we show that Fe65, one of the ligands of the APP cytodomain, is associated with Tau in vivo and in vitro, as demonstrated by co-immunoprecipitation, co-localization, and FRET experiments.

View Article and Find Full Text PDF