Publications by authors named "Giuseppe Antonacci"

Brillouin Light Scattering (BLS) spectroscopy is a non-invasive, non-contact, label-free optical technique that can provide information on the mechanical properties of a material on the sub-micron scale. Over the last decade it has seen increased applications in the life sciences, driven by the observed significance of mechanical properties in biological processes, the realization of more sensitive BLS spectrometers and its extension to an imaging modality. As with other spectroscopic techniques, BLS measurements not only detect signals characteristic of the investigated sample, but also of the experimental apparatus, and can be significantly affected by measurement conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Acoustic vibrations provide key viscoelastic information that can be analyzed using inelastic Brillouin scattered light, but traditional methods struggle with turbid samples due to excess background light.
  • The introduction of a common-path Birefringence-Induced Phase Delay (BIPD) filter allows for better separation of Brillouin and Rayleigh signals, significantly reducing background noise by an extinction ratio of 65 dB.
  • This technique was successfully applied to image bone tissues in a mouse model of osteopetrosis, revealing changes in biomechanical properties and offering new insights into mechanobiology for challenging biological samples.
View Article and Find Full Text PDF

Many important biological functions and processes are reflected in cell and tissue mechanical properties such as elasticity and viscosity. However, current techniques used for measuring these properties have major limitations, such as that they can often not measure inside intact cells and/or require physical contact-which cells can react to and change. Brillouin light scattering offers the ability to measure mechanical properties in a non-contact and label-free manner inside of objects with high spatial resolution using light, and hence has emerged as an attractive method during the past decade.

View Article and Find Full Text PDF

The role and importance of mechanical properties of cells and tissues in cellular function, development and disease has widely been acknowledged, however standard techniques currently used to assess them exhibit intrinsic limitations. Recently, Brillouin microscopy, a type of optical elastography, has emerged as a non-destructive, label- and contact-free method that can probe the viscoelastic properties of biological samples with diffraction-limited resolution in 3D. This led to increased attention amongst the biological and medical research communities, but it also sparked debates about the interpretation and relevance of the measured physical quantities.

View Article and Find Full Text PDF

Amyotrophic lateral sclerosis (ALS) has been genetically linked to mutations in RNA-binding proteins (RBPs), including FUS. Here, we report the RNA interactome of wild-type and mutant FUS in human motor neurons (MNs). This analysis identified a number of RNA targets.

View Article and Find Full Text PDF

Cells sense and respond to external physical forces and substrate rigidity by regulating their cell shape, internal cytoskeletal tension, and stiffness. Here we show that the combination of micropillar traction force and noncontact Brillouin microscopy provides access to cell-generated forces and intracellular mechanical properties at optical resolution. Actin-rich cytoplasmic domains of 3T3 fibroblasts showed significantly higher Brillouin shifts, indicating a potential increase in stiffness when adhering on fibronectin-coated glass compared to soft PDMS micropillars.

View Article and Find Full Text PDF

: A hallmark of glioblastoma is represented by their ability to widely disperse throughout the brain parenchyma. The importance of developing new anti-migratory targets is critical to reduce recurrence and improve therapeutic efficacy. : Polydimethylsiloxane substrates, either mechanically uniform or presenting durotactic cues, were fabricated to assess GBM cell morphological and dynamical response with and without pharmacological inhibition of NNMII contractility, of its upstream regulator ROCK and actin polymerization.

View Article and Find Full Text PDF

Immune checkpoint inhibitor therapy has changed clinical practice for patients with different cancers, since these agents have demonstrated a significant improvement of overall survival and are effective in many patients. However, an intrinsic or acquired resistance frequently occur and biomarkers predictive of responsiveness should help in patient selection and in defining the adequate treatment options. A deep analysis of the complexity of the tumor microenvironment is likely to further advance the field and hopefully identify more effective combined immunotherapeutic strategies.

View Article and Find Full Text PDF

Standard imaging systems provide a spatial resolution that is ultimately dictated by the numerical aperture (NA) of the illumination and collection optics. In biological tissues, the resolution is strongly affected by scattering, which limits the penetration depth to a few tenths of microns. Here, we exploit the properties of speckle patterns embedded into a strongly scattering matrix to illuminate the sample at high spatial frequency content.

View Article and Find Full Text PDF

An ideal illumination for light sheet fluorescence microscopy entails both a localized and a propagation invariant optical field. Bessel beams and Airy beams satisfy these conditions, but their non-diffracting feature comes at the cost of the presence of high-energy side lobes that notably degrade the imaging contrast and induce photobleaching. Here, we demonstrate the use of a light droplet illumination whose side lobes are suppressed by interfering Bessel beams of specific k-vectors.

View Article and Find Full Text PDF

Altered cellular biomechanics have been implicated as key photogenic triggers in age-related diseases. An aberrant liquid-to-solid phase transition, observed in in vitro reconstituted droplets of FUS protein, has been recently proposed as a possible pathogenic mechanism for amyotrophic lateral sclerosis (ALS). Whether such transition occurs in cell environments is currently unknown as a consequence of the limited measuring capability of the existing techniques, which are invasive or lack of subcellular resolution.

View Article and Find Full Text PDF

Brillouin microscopy is a non-contact and label-free technique for mapping fundamental micro-mechanical properties in the volume of biological systems. Specular reflections and elastic scattering easily overwhelm the weak Brillouin spectra due to the limited extinction of virtually imaged phased array spectrometers, thereby affecting the image acquisition. In this Letter, a dark-field method was demonstrated to reject the elastic background light using an annular illumination and a confocal detection.

View Article and Find Full Text PDF

Cellular biomechanics play a pivotal role in the pathophysiology of several diseases. Unfortunately, current methods to measure biomechanical properties are invasive and mostly limited to the surface of a cell. As a result, the mechanical behaviour of subcellular structures and organelles remains poorly characterised.

View Article and Find Full Text PDF

Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques.

View Article and Find Full Text PDF

We describe a new mid-infrared (mid-IR) imaging method specifically designed to augment the H + E tissue staining protocol. Images are taken with bespoke IR filters at wavelengths that enable chemical maps to be generated, corresponding to the cytoplasmic (amide) and nuclear (phosphodiester) components of unstained oesophageal tissue sections. A suitably calibrated combination of these generates false colour computer images that reproduce not only the tissue morphology, but also accurate and quantitative distributions of the nuclear-to-cytoplasmic ratio throughout the tissue section.

View Article and Find Full Text PDF