The human liver plays a central metabolic role; however, its physiology may become imbalanced in inborn errors of metabolism (IEM), a broad category of monogenic disorders. Liver transplantation has been increasingly used to improve patient metabolic control, especially in diseases related to amino acid metabolism, such as urea cycle disorders and organic acidurias, to provide enzyme replacement. Ex vivo liver normothermic machine perfusion (NMP) techniques have recently been developed to increase the number of transplantable grafts and improve transplantation outcomes.
View Article and Find Full Text PDFImmunity suffers a function deficit during aging, and the incidence of cancer is increased in the elderly. However, most cancer models employ young mice, which are poorly representative of adult cancer patients. We have previously reported that Triple-Therapy (TT), involving antigen-presenting-cell activation by vinorelbine and generation of TCF1-stem-cell-like T cells (scTs) by cyclophosphamide significantly improved anti-PD-1 efficacy in anti-PD1-resistant models like Triple-Negative Breast Cancer (TNBC) and Non-Hodgkin's Lymphoma (NHL), due to T-cell-mediated tumor killing.
View Article and Find Full Text PDFChemotherapeutic agents have profound effects on cancer, stroma and immune cells that - in most cases - depend upon the dosage and schedule of administration. Preclinical and clinical studies summarized and discussed in the present review have demonstrated that maximum tolerable dosage (MTD) vs low-dosage, continuous (metronomic) administration of most chemotherapeutics have polarized effects on immune cells. In particular, metronomic schedules might be associated - among others effects - with activation of antigen presenting cells and generation of new T cell clones to enhance the activity of several types of immunotherapies.
View Article and Find Full Text PDFWe have previously shown in triple-negative breast cancer (TNBC) models that a triple therapy (TT) including intermittent cyclophosphamide (C), vinorelbine (V), and anti-PD-1 activates antigen-presenting cells (APC) and generates stem like-T cells able to control local and metastatic tumor progression. In the present manuscript, we report the generation of a highly aggressive, anti-PD-1 resistant model of a high-grade, Myc-driven B-cell non-Hodgkin's lymphoma (NHL) that can be controlled in vivo by TT but not by other chemotherapeutic agents, including cytarabine (AraC), platinum (P), and doxorubicin (D). The immunological memory elicited in tumor-bearing mice by TT (but not by other treatments) can effectively control NHL re-challenge even at very high inoculum doses.
View Article and Find Full Text PDF